Skip to main content

Deactivation of Laminin-Specific Cell-Surface Receptors Accompanies Immobilization of Myoblasts During Differentiation

  • Conference paper
Receptors, Membrane Transport and Signal Transduction

Part of the book series: NATO ASI Series ((ASIH,volume 29))

  • 191 Accesses

Abstract

During embryonal development, myoblasts move from the dermomyotome of the somites through the embryo before terminally differentiating and fusing in highly reproducible patterns to form static syncytial myotubes which integrate to produce the muscle anlagen(Chevalier,1979;Christ et al.1983; Trinkaus, 1984). Not all the migrated myoblasts go on to form myotubes; a reserve population of satellite cells is maintained in a quiescent state between the cell membrane of the myotube and a specialized ECM that surrounds it, the basement membrane (BM)(Vracko and Benditt, 1974; Timpl and Dziadek, 1987). If the muscle is damaged, these cells are activated by unknown mechanisms to reiterate the developmental processes and rebuild syncytial muscle fibres(Gulati et al., 1983;Bisehoff, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albini, A., Graf, J., Kitten, G. T., Kleinman, H. K., Martin, G. R. Veillette, A. and Lippman, M. E., (1986). 17β-estradiol regulates and v-Ha-ras transfection constitutively enhances MCF7 breast cancer cell interactions with basement membrane. Proc. Natn. Acad. Sci. U.S.A. 83, 8182–8186.

    Google Scholar 

  • Aumailley, M., Nurcombe, V., Edgar, D., Paulsson, M., and Timpl, R., (1987). Cellular Interactions with laminin. Cell adhesion correlates with two fragment specific high affinity binding sites. J. Biol. Chem. 262, 11532–11538.

    PubMed  CAS  Google Scholar 

  • Bischoff, R., (1986). Proliferation of muscle satellite cells on intact myofibres in culture. Dev. Biol. 115, 129-139.

    Google Scholar 

  • Bronner-Fraser, M. and Lallier, T., (1988). A monoclonal antibody against a laminin-heparan sulphate proteoglycan complex perturbs cranial neural crest migration in vivo. J. Cell Biol. 106 1321–1329.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier, A., (1979). Role of the somitic mesoderm in the development of the thorax in bird embryos. J.Embryol. exp. Morph. 49, 73–88.

    Google Scholar 

  • Christ, B. Jacob, M., and Jacob,H. J., (1983). On the origin and development of the ventrolateral abdominal muscles in the avian embryo. Anat.Embryol. 166, 87–101.

    CAS  Google Scholar 

  • Edgar, D., Timpl, R., and Thoenen H., (1984). The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBO. J. 3, 1463–1468.

    PubMed  CAS  Google Scholar 

  • Foster, R. F., Thomson, J. M., and Kaufman, S. J., (1987). A laminin substrate promotes myogenesis in rat skeletal muscle cultures: analysis of replication and development using anti-desmin and anti-Brd-Urd monoclonal antibodies. Dev. Biol. 122, 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Gehlsen, K.R., Dillner,L., Engvall,E. and Ruoslathi,E. (1988). The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science, 241. 1228–1229.

    CAS  Google Scholar 

  • Goodman, S. L., Deutzmann, R., and von der Mark, K.,(1987). Two distinct cell-binding domains in laminin can independently promote non-neuronal cell adhesion and spreading. J. Cell Biol. 105, 595–610.

    Google Scholar 

  • Gulati, A. K., Reddi, A. H., and Zalewski, A. A., (1983). Changes in the basement membrane zone components during skeletal muscle fiber degeneration and regeneration. J.Cell Biol. 97, 957–962.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, A., Duggan, K., Greggs, R., Decker, C. and Buck, C. A., (1985). The cell substrate attachment (CSAT) antigen has the properties of a receptor for laminin and fibronectin. J.Cell Biol. 101, 2134–2144.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O., (1987). Integrins: a family of cell surface receptors. Cell, 48, 549–554.

    Article  PubMed  CAS  Google Scholar 

  • Jaffredo, T., Horwitz, A. H., Buck, C. A., Rong, P. M., and Dieterlen-Lievre, F.,(1988). Myoblast migration specifically inhibited in the chick embryo by grafted CSAT hybridoma cells secreting an anti-integrin antibody. Development, 103, 431–466.

    Google Scholar 

  • Kühl, U., Öcalan, M., Timpl, R., and von der Mark, K., (1985). The role of laminin and fibronectin in selecting myogenic versus fibrogenic cells from skeletal muscle in vitro. Dev. Biol. 117, 628–635.

    Article  Google Scholar 

  • Kühl, U, Timpl, R., and von der Mark, K., (1982). Synthesis of type IV collagen and laminin in cultures of skeletal muscle cells and their assembly on the surface of myotubes. Dev. Biol. 93, 344–354.

    Article  PubMed  Google Scholar 

  • Lim, R. W., and Hauschka, S. D., (1984). EGF responsiveness and receptor regulation in normal and differentiation defective mouse myoblasts. J. Cell Biol. 98, 739–747.

    Article  PubMed  CAS  Google Scholar 

  • Marcantonio, E. E. and Hynes, R. O., (1988). Antibodies to the cytoplasmic domain of the integrin β1 subunit react with proteins in vertebrates, invertebrates and fungi. J.Cell Biol 106, 1765–1772.

    Article  PubMed  CAS  Google Scholar 

  • Menko, A. S. and Boettiger, D.,(1987). Occupation of the extracellular matrix receptor integrin is a control point for myogenic differentiation. Cell, 51, 51–57.

    Google Scholar 

  • Öcalan, M., Goodman, S. L., Kühl, U., Hauschka, S. D., and von der Mark, K., (1988). Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Dev. Biol. 125, 158–169.

    Article  PubMed  Google Scholar 

  • Risse, G., Dieckhoff, J., Mannherz, K. H., and von der Mark, K., (1987). The interaction of laminin with cell membranes, in Membrane Receptors, dynamics and energetics (ed. K.W.A. Wirtz, Plenum Publishing ) pp 173–180.

    Google Scholar 

  • Terranova, V. P., Rao, C. N., Kalebic, T., Margulies, I. M., and Liotta, L. A., (1983). Laminin receptors on human breast carcinoma cells. Proc. natn. Acad. sei. USA. 80, 444–448.

    Article  CAS  Google Scholar 

  • Timpl, R. and Dziadek, M.,(1987). Structure, development and molecular pathology of basement membranes. Int. rev. Exp. Pathol. 29, 1–112.

    Google Scholar 

  • Timpl, R., Johansson, S., van Delden, V., Oberbäumer, I. and Höök, M., (1983). Characterization of protease-resistant fragments of laminin mediating attachment and spreading of rat hepatocytes. J. Biol. Chem. 258, 8922–8927.

    PubMed  CAS  Google Scholar 

  • Towbin, H., Staehelin,T. and Gordon, J., (1979). Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. natn. Acad. Sei. US. 76, 4350–4354.

    CAS  Google Scholar 

  • Trinkaus, J. P., (1984). Cells into organs. The forces that shape the embryo. Prentice-Hall inc., Englewood Cliffs NJ.

    Google Scholar 

  • Turner, D. C., Lawton, J., Dollenmeier, P., Ehrismann, R. and Chiquet M., (1983). Guidance of myogenic cell migration by oriented deposits of fibronectin. Devi Biol. 95. 497–504.

    Article  CAS  Google Scholar 

  • Vracko, R. and Benditt, E.P., (1974). Basal lamina scaffold anatomy and significance in orderly tissue structure. Amer. J. Pathol. 77, 314–350.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goodman, S.L., Nurcombe, V., von der Mark, K. (1989). Deactivation of Laminin-Specific Cell-Surface Receptors Accompanies Immobilization of Myoblasts During Differentiation. In: Evangelopoulos, A.E., Changeux, J.P., Packer, L., Sotiroudis, T.G., Wirtz, K.W.A. (eds) Receptors, Membrane Transport and Signal Transduction. NATO ASI Series, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74200-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74200-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74202-6

  • Online ISBN: 978-3-642-74200-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics