Skip to main content

Tumour Necrosis Factor and Interleukin-6: Structure and Mechanism of Action of the Molecular, Cellular and in Vivo Level

  • Chapter
Book cover Vectors as Tools for the Study of Normal and Abnormal Growth and Differentiation

Abstract

Tumour necrosis factor (TNF) can be induced in experimental animals by injection of Bacillus Calmette-Guérin followed, after one or two weeks, by treatment with lipopolysaccharide (LPS); serum taken a few hours later contains a high concentration of TNF (Carswell et al., 1975). Isolated macrophages, e.g. obtained from placenta, can be activated with interferon-γ (LFN-γ) and 24 h later induced to produce TNF by treatment with LPS. Also monocytic cell lines, such as the human U-937 line or the murine PU-518 line, can be induced under proper conditions to produce TNF (Männel et al., 1980; Fransen et al., 1985; Marmenout et al., 1985). We have cloned and expressed to a high specific activity in E. coli both the human TNF (hTNF) gene (Marmenout et al., 1985) and the murine TNF (mTNF) gene (Fransen et al., 1985). Also the sequence of the rabbit TNF gene has been reported (Ito et al., 1986). TNF obtained from various species is highly homologous (about 80%). The subunit of the mature hTNF is a 157 amino acids long polypeptide (156 amino acids for mTNF). The native protein is a nearly spherical, trimeric molecule, containing 45% β-structure and little or no α-helix (Wingfield et al., 1987). TNF, as its name implies, was originally recognized as a substance causing necrosis of tumours in experimental animals; this was usually demonstrated by means of a methyl-cholanthrene-induced sarcoma, and it may be noted that obtaining effective tumour regression requires a rather strict adherence to a defined treatment protocol. Remarkably (and almost by coincidence as it later turned out), TNF is also selectively toxic to some transformed cell lines. But in the presence of concomitant treatment with interferon (IFN), many more transformed and malignant cell lines become sensitive to the cytotoxic action of TNF (Williamson et al., 1983; Fransen et al., 1986b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachwich PR, Chensue SW, Larrick JW, Kunke SL (1986) Tumor necrosis factor stimulates interleukin-1 and prostaglandin E2 production in resting macrophages. Biochem Biophys Res Commun 136: 94–101

    Article  PubMed  CAS  Google Scholar 

  • Balkwill FR, Lee A, Aldam G, Moodie E, Thomas JA, Tavernier J, Fiers W (1986) Human tumor xenografts treated with recombinant human tumor necrosis factor alone or in combination with interferons. Cancer Res 46: 3990–3993

    PubMed  CAS  Google Scholar 

  • Balkwill FR, Ward BG, Moodie E, Fiers W (1987) Therapeutic potential of tumor necrosis factor-α and γ-interferon in experimental human ovarian cancer. Cancer Res 47: 4755–4758

    PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA (1986) Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin-1. Proc Natl Acad Sci USA 83: 4533–4537

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Wheeler ME, Pober JS, Fiers W, Mendrick DL, Cotran RS, Gimbrone MA (1987) Endothelial-dependent mechanisms of leukocyte adhesion: regulation by interleukin 1 and tumor necrosis factor. In: Movat HZ (ed) Leukocyte emigration and its sequelae. Karger, Basel, p 79

    Google Scholar 

  • Brouckaert PGG, Leroux-Roels GG, Guisez Y, Tavernier J, Fiers W (1986) In vivo antitumor activity of recombinant human and murine TNF, alone and in combination with murine IFN-γ, on a syngeneic murine melanoma. Int J Cancer 38: 763–769

    Article  PubMed  CAS  Google Scholar 

  • Brouckaert PG, Everaerdt B, Libert C, Takahashi N, Fiers W (1989) Species specificity and involvement of other cytokines in endotoxic shock action of recombinant tumour necrosis factor in mice. Ag Act (in press)

    Google Scholar 

  • Brouckaert P, Spriggs DR, Demetri G, Kufe DW, Fiers W (submitted) Circulating interleukin-6 during a continuous infusion of tumour necrosis factor and interferon-γ

    Google Scholar 

  • Broudy VC, Kaushansky K, Segal GM, Harlan JM, Adamson JW (1986) Tumor necrosis factor type alpha stimulates human endothelial cells to produce granulocyte/macrophage colony stimulating factor. Proc Natl Acad Sci USA 83: 7467–7471

    Article  PubMed  CAS  Google Scholar 

  • Bussolino F, Camussi G, Baglioni C (1988) Synthesis and release of platelet-activating factor by human vascular endothelial cells treated with tumor necrosis factor or interleukin 1α. J Biol Chem 263: 11856–11861

    PubMed  CAS  Google Scholar 

  • Camussi G, Bussolino F, Salvidio G, Baglioni C (1987) Tumor necrosis factor/cachectin stimulates peritoneal macrophages, polymorphonuclear neutrophils, and vascular endothelial cells to synthesize and release platelet-activating factor. J Exp Med 166: 1390–1404

    Article  PubMed  CAS  Google Scholar 

  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666–3670

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Lapierre LA, Fiers W, Strominger JL, Pober JS (1986) Recombinant human tumor necrosis factor increases mRNA levels and surface expression of HLA-A,B antigens in vascular endothelial cells and dermal fibroblasts in vitro. Proc Natl Acad Sci USA 83: 446–450

    Article  PubMed  CAS  Google Scholar 

  • Content J, De Wit L, Pierard D, Derynck R, De Clercq E, Fiers W (1982) Secretory proteins induced in human fibroblasts under conditions used for the production of interferon p. Proc Natl Acad Sci USA 79: 2768–2772

    Article  PubMed  CAS  Google Scholar 

  • Coulie PG, Cayphas S, Vink A, Uyttenhove C, Van Snick J (1987) Interleukin-HP1- related hybridoma and plasmacytoma growth factors induced by lipopolysaccharide in vivo. Eur J Immunol 17: 1217–1220

    Article  PubMed  CAS  Google Scholar 

  • Dayer JM, Beutler B, Cerami A (1985) Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med 162: 2163–2168

    Article  PubMed  CAS  Google Scholar 

  • Defilippi P, Poupart P, Tavernier J, Fiers W, Content J (1987) Induction and regulation of mRNA encoding 26-kDa protein in human cell lines treated with recombinant human tumor necrosis factor. Proc Natl Acad Sci USA 84: 4557–4561

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA, Cannon JG, Wolff SM, Bernheim HA, Beutler B, Cerami A, Figari IS, Palladino A Jr, O’Connor JV (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 163: 1433–1450

    Article  PubMed  CAS  Google Scholar 

  • Fiers W, Brouckaert P, Devos R, Fransen L, Leroux-Roels G, Remaut E, Suffys P, Tavernier J, Van der Heyden J, Van Roy F (1986a) Lymphokines and monokines in anti-cancer therapy. Cold Spring Harbor Symp Quant Biol 51: 587–595

    PubMed  CAS  Google Scholar 

  • Fiers W, Brouckaert P, Guisez Y, Remaut E, Van Roy F, Devos R, Fransen L, Leroux-Roels G, Marmenout A, Tavernier J, Van der Heyden J (1986b) Recombinant interferon gamma and its synergism with tumor necrosis factor in the human and mouse systems. In: Stewart II WE, Schellekens H (eds) The biology of the interferon system 1985. Elsevier Science Publishers, Amsterdam, p 241

    Google Scholar 

  • Fiers W, Brouckaert P, Goldberg AL, Kettelhut I, Suffys P, Tavernier J, Vanhaesebroeck B, Van Roy F (1987) Structure function relationship of tumour necrosis factor and its mechanism of action. In: Ciba Foundation Symposium 131, Tumour necrosis factor and related cytotoxins. John Wiley & Sons, Chichester, p 109

    Google Scholar 

  • Fiers W, Brouckaert P, Content J, Contreras R, Everaerdt B, Guisez Y, Libert C, Spriggs D, Takahashi N, Tison B, Vandenabeele P, Van Snick J (in press) Interleukin-6: biological function and regulation of the gene expression in vitro and in vivo. Adv. Immunopharmacol 4

    Google Scholar 

  • Fransen L, Müller R, Marmenout A, Tavernier J, Van der Heyden J, Kawashima E, Chollet A, Tizard R, Van Heuverswyn H, Van Vliet A, Ruysschaert MR, Fiers W (1985) Molecular cloning of mouse tumour necrosis factor cDNA and its eukaryotic expression. Nucl Acids Res 13: 4417–4429

    Article  PubMed  CAS  Google Scholar 

  • Fransen L, Ruysschaert MR, Van der Heyden J, Fiers W (1986a) Recombinant tumour necrosis factor: species specificity for a variety of human and murine transformed cell lines. Cell Immunol 100: 260–267

    Article  PubMed  CAS  Google Scholar 

  • Fransen L, Van der Heyden J, Ruysschaert R, Fiers W (1986b) Recombinant tumor necrosis factor: its effect and its synergism with interferon-γ on a variety of normal and transformed human cell lines. Eur J Cancer Clin Oncol 22: 419–426

    Article  PubMed  CAS  Google Scholar 

  • Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA 76: 5939–5943

    Article  PubMed  CAS  Google Scholar 

  • Gamble JR, Harlan JM, Klebanoff SJ, Vadas MA (1985) Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA 82: 8667–8671

    Article  PubMed  CAS  Google Scholar 

  • Gresser I, Belardelli F, Tavernier J, Fiers W, Podo F, Federico M, Carpinelli G, Duvillard P, Prade M, Maury C, Bandu MT, Maunory MT (1986) Antitumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant Friend leukemia cells. V. Comparisons with tumor necrosis factor. Int J Cancer 38: 771–778

    Google Scholar 

  • Haegeman G, Content J, Volckaert G, Derynck R, Tavernier J, Fiers W (1986) Structural analysis of the sequence coding for an inducible 26-kDa protein in human fibroblasts. Eur J Biochem 159: 625–632

    Article  PubMed  CAS  Google Scholar 

  • Hepburn A, Boeynaems JM, Fiers W, Dumont JE (1987) Modulation of tumor necrosis factor-α cytotoxicity in L929 cells by bacterial toxins, hydrocortisone and inhibitors of arachidonic acid metabolism. Biochem Biophys Res Commun 149: 815–822

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Matsuda T, Hosoi K, Okano A, Matsui H, Kishimoto T (1988) Absence of antiviral activity in recombinant B cell stimulatory factor 2 (BSF-2). Immunol Lett 17: 41–45

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Yamamoto S, Kuroda S, Sakamoto H, Kajihara J, Kiyota T, Hayashi H, Kato M, Seko M (1986) Molecular cloning and expression in E. coli of the cDNA coding for rabbit tumor necrosis factor. DNA 5: 149–156

    CAS  Google Scholar 

  • Kettelhut I, Fiers W, Goldberg A (1987) The toxic effects of tumor necrosis factor in vivo and their prevention by cyclooxygenase inhibitors. Proc Nad Acad Sci USA 84: 4273–4277

    Article  CAS  Google Scholar 

  • Kurt-Jones EA, Fiers W, Pober JS (1987) Membrane interleukin 1 induction on human endothelial cells and dermal fibroblasts. J Immunol 139: 2317–2324

    PubMed  CAS  Google Scholar 

  • Lehmann V, Freudenberg MA, Galanos C (1987) Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J Exp Med 165: 657–663

    Article  PubMed  CAS  Google Scholar 

  • Libby P, Ordovas JM, Auger KR, Robbins AH, Birinyi LK, Dinarello CA (1986) Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol 124: 179–185

    PubMed  CAS  Google Scholar 

  • Männel DN, Moore RN, Mergenhagen SE (1980) Macrophages as a source of tumoricidal activity (tumor-necrotizing factor). Infect Immun 30: 523–530

    PubMed  Google Scholar 

  • Mareel M, Dragonetti C, Tavernier J, Fiers W (1988) Tumor selective cytotoxic effects of murine tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma) in organ culture of B16 melanoma cells and heart tissue. Int J Cancer 42: 470–473

    Article  PubMed  CAS  Google Scholar 

  • Marmenout A, Fransen L, Tavernier J, Van der Heyden J, Tizard R, Kawashima E, Shaw A, Johnson MJ, Semon D, Müller R, Ruysschaert MR, Van Vliet A, Fiers W (1985) Molecular cloning and expression of human tumor necrosis factor and comparison with mouse tumor necrosis factor. Eur J Biochem 152: 515–522

    Article  PubMed  CAS  Google Scholar 

  • Marquet RL, IJzermans JNM, De Bruin RWF, Fiers W, Jeekel J (1987) Anti-tumor activity of recombinant mouse tumor necrosis factor ( TNF) on colon cancer in rats is promoted by recombinant rat interferon gamma; toxicity is reduced by indomethacin. Int J Cancer 40: 550–553

    Google Scholar 

  • Messadi DV, Pober JS, Fiers W, Gimbrone MA, Murphy GF (1987) Induction of an activation antigen on postcapillary venular endothelium in human skin organ culture. J Immunol 139: 1557–1562

    PubMed  CAS  Google Scholar 

  • Mosselmans R, Hepburn A, Dumont JE, Fiers W, Galand P (1988) Endocytic pathway of recombinant murine tumor necrosis factor in L-929 cells. J Immunol (in press)

    Google Scholar 

  • Munker R, Gasson J, Ogawa M, Koeffler HP (1986) Recombinant human TNF induces production of granulocyte-monocyte colony-stimulating factor. Nature 323: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Nawroth PP, Bank I, Handley D, Cassimeris J, Chess L, Stern D (1986a) Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin Exp Med 163: 1363–1375

    CAS  Google Scholar 

  • Nawroth PP, Stern DM (1986b) Modulation of endothelial cell homostatic properties by tumor necrosis factor. J Exp Med 163: 740–745

    Article  PubMed  CAS  Google Scholar 

  • Parant F, Fiers W, Parant M (submitted) Absence of species preference of human and murine tumor necrosis factor in toxicity and anti-infectious studies in mice.

    Google Scholar 

  • Pober JS, Bevilacqua MP, Mendrick DL, Lapierre LA, Fiers W, Gimbrone MA (1986) Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol 136: 1680–1687

    PubMed  CAS  Google Scholar 

  • Pober JS, Lapierre LA, Stolpen AH, Brock TA, Springer TA, Fiers W, Bevilacqua TA, Mendrick DL, Gimbrone MA (1987) Activation of cultured human endothelial cells by recombinant lymphotoxin: comparison with tumor necrosis factor and interleukin 1 species. J. Immunol 138: 3319–3324

    PubMed  CAS  Google Scholar 

  • Poupart P, Vandenabeele P, Cayphas S, Van Snick J, Haegeman G, Kruys V, Fiers W, Content J (1987) B-cell growth modulating and differentiating activity of recombinant human 26 kDa protein (BSF-2, HuIFN-β2, HPGF ). EMBO J 6: 1219–1224

    Google Scholar 

  • Reis LFL, Le J, Hirano T, Kishimoto T, Vilcek J (1988) Antiviral action of tumor necrosis factor in human fibroblasts is not mediated by B cell stimulatory factor 2/IFN-β 2, and is inhibited by specific antibodies to IFN-β. J Immunol 140: 1566–1570

    PubMed  CAS  Google Scholar 

  • Stolpen AH, Guinan EC, Fiers W, Pober JS (1986) Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol 123: 16–24

    PubMed  CAS  Google Scholar 

  • Suffys P, Beyaert R, Van Roy F, Fiers W (1987) Reduced tumour necrosis factor-induced cytotoxicity by inhibitors of the arachidonic acid metabolism. Biochem Biophys Res Commun 149: 735–743

    Article  PubMed  CAS  Google Scholar 

  • Suffys P, Van Roy F, Fiers W (1988) Tumour necrosis factor and interleukin 1 activate phospholipase in rat chondrocytes. FEBS Lett 232: 24–28

    Article  PubMed  CAS  Google Scholar 

  • Van Hinsbergh VWM, Kooistra T, Princen HMG, Fiers W, Emeis JJ (1988) Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo. Blood (in press)

    Google Scholar 

  • Van Hinsbergh VWM, Van den Berg EA, Fiers W, Dooijewaard G (submitted) Tumor necrosis factor induces the production of urokinase-type plasminogen activator by human endothelial cells.

    Google Scholar 

  • Van Snick J, Cayphas S, Szikora JP, Renauld JC, Van Roost E, Boon T, Simpson RJ (1988) cDNA cloning of murine interleukin-HP1: homology with human interleukin 6. Eur J Immunol 18: 193–197

    Google Scholar 

  • Vilcek J, Palombella VJ, Henriksen-DeStefano D, Swenson C, Feinman R, Hirai M, Tsujimoto M (1986) Fibroblast growth enhancing activity of tumor necrosis factor and its relationship to other polypeptide growth factors. J Exp Med 163: 632–643

    Article  PubMed  CAS  Google Scholar 

  • Wallach D, Holtmann H, Engelmann H, Nophar Y (1988) Sensitization and desensitization to lethal effects of tumor necrosis factor and EL-1. J Immunol 140:29– 94–2999

    Google Scholar 

  • Williamson BD, Carswell EA, Rubin BY, Prendergast JS, Old LJ (1983) Human tumor necrosis factor produced by human B-cell lines: synergistic cytotoxic interaction with human interferon. Proc Natl Acad Sci USA 80: 5397–5401

    Article  PubMed  CAS  Google Scholar 

  • Wingfield P, Pain RH, Craig S (1987) Tumour necrosis factor is a compact trimer. FEBS Lett 211: 179–184

    Article  PubMed  CAS  Google Scholar 

  • Zavoico GB, Ewenstein BM, Schafer AI, Pober JS (submitted) Interleukin-1 and related cytokines enhance thrombin stimulated PGI2 production in cultured endothelial cells without affecting thrombin-stimulated von Willebrand factor secretion or platelet activating factor biosynthesis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiers, W. et al. (1989). Tumour Necrosis Factor and Interleukin-6: Structure and Mechanism of Action of the Molecular, Cellular and in Vivo Level. In: Lother, H., Dernick, R., Ostertag, W. (eds) Vectors as Tools for the Study of Normal and Abnormal Growth and Differentiation. NATO ASI Series, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74197-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74197-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74199-9

  • Online ISBN: 978-3-642-74197-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics