The Role of Non-Platinum Complexes in Cancer Therapy

  • B. K. Keppler
Conference paper
Part of the NATO ASI Series book series (volume 37)

Abstract

Metal complexes as pharmaceutical agents have been used since early history, but therapeutic efficacy in today’s meaning of the term was first confirmed on the basis of the examples of salvarsan (1910), particularly efficient in cases of syphilis, and some organic mercury compounds, such as novasurol (1919), and salyrgan (1924), which were used as diuretic agents. These drugs have gradually come to be replaced by compounds from organic chemistry that exhibit better activity. Nowadays drugs from inorganic chemistry are mainly represented by auranofin (INN), (2,3,4,6-tetra-O-acetyl-1-thio-1-ß-D-glucopyranosato)(triethylphosphine)gold(I) (Fig. 1), active against primary chronic poly-arthritis (PCP) (Bemers-Price and Sadler, 1985; Lewis and Walz, 1982), sodium nitroprusside, niprussR, disodiumpentacyanonitrosylferrate(II)dihydrate, Na2[Fe(NO)(CN)5] x 2H2O, used as an emergency drug in the case of high blood pressure crises, lithium salts, used in psychiatry (Pöldinger, 1982), many preparations for local application in dermatology and gastroenterology, and metal salts for the prevention of deficiencies. In cancer therapy, the only drug from inorganic chemistry to be under routine clinical use is cisplatin (INN), cis-diamminedichloroplatinum(II) (Fig. 2). This drug was synthesized for the first time by Michele Peyrone and was published in 1844 in the “Annals of Chemistry and Pharmacy” (Peyrone, 1844).

Keywords

Titanium Adduct Osteosarcoma Bisphosphonates Germanium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterrath, W., Raettig, R., Franks, C.R., and Seeber, S. (1984). Aktuelle CisplatinDerivate. In: S. Seeber et al. (eds.), Beiträge zur Onkologie, Bd. 18, Das Resistenzproblem bei der Chemo-und Radiotherapie maligner Tumoren, 58–82, S. Karger Verlag Basel.Google Scholar
  2. Adamson, R.H., Canellos, G.P., and Sieber, S.M. (1975). Studies on the Antitumor Activity of Gallium Nitrate (NSC 15200) and Other Group Ma Metal Salts. Cancer Chemotherapy Reports (Part 1), 59, 3, 599–610.Google Scholar
  3. Alessio, E., Attia, W., Calligaris, M., Cauci, S., Dolzani, L., Mestroni, G., MontiBragadin, C., Nardin, G., Quadrifoglio, F., Sava, G., Tamaro, M., and Zorzet, S. (1988). Metal Complexes of Platinum Group: The Promising Antitumor Features of cisDichlorotetrakis(dimethylsulfoxide)ruthenium(II) [cis-RuC12(MeSO)4] and Related Complexes. In: Nicolini, M. (ed.), Proc. of the 5th Int. Symp. on Platinum and other Metal Coordination Compounds in Cancer Chemotherapy, 617–633, Martinus Nijhoff Publishing, Boston.Google Scholar
  4. Alessio, E., Mestroni, G., Nardin, G., Attia, W.M., Calligaris, M., Sava, G., and Zorzet, S. (1988). Cis-and trans-Dihalotetrakis(dimethylsulfoxide)ruthenium(II) Complexes (RuX2(DMSO)4; X = Cl, Br): Synthesis, Structure, and Antitumor Activity. Inorganic Chemistry, 27, 23, 4099–4106.Google Scholar
  5. Anghileri, L.J. (1975). On the Antitumor Activity of Gallium and Lanthanides. Arzneim.-Forsch./Drug Res. 25, 5, 793–795.Google Scholar
  6. Anghileri, L.J. (1979). Effects of Gallium and Lanthanum on Experimental Tumor Growth. Europ. J. Cancer, 15, 1459–1462.Google Scholar
  7. Anghileri, L.J., Crone-Escanye, M.-Chr., and Robert, J. (1987). Antitumor Activity of Gallium and Lanthanum: Role of Cation-Cell Membrane Interaction. Anticancer Res., 7, 1205–1208.PubMedGoogle Scholar
  8. Berger, M.R., Bischoff, H., Garzon, F.T., and Schmähl, D. (1986). Autochthonous, Acetoxymethylmethylnitrosamine-induced Colorectal Cancer in Rats: A Useful Tool in Selecting New Active Antineoplastic Agents? HepatogastroenteroL 33, 227–234.Google Scholar
  9. Berger, M.R., Bischoff, H., Garzon, F.T., and Schmähl, D. (1986). Autochthonous, Acetoxymethylmethylnitrosamine-induced Colorectal Cancer in Rats: A Useful Tool in Selecting New Active Antineoplastic Agents? HepatogastroenteroL 33, 227–234.Google Scholar
  10. Berners-Price, S.J., and Sadler, P.J. (1985 ). Gold Drugs. Front. Bioinorg. Chem.,376–88.Google Scholar
  11. Berners-Price, S.J., Mirabelli, Ch.K., Johnson, R.K., Mattem, M.R., McCabe, F.L., Faucette, L.F., Chiu-Mei Sung, Shau-Ming Mong, Sadler, P.J., and Crooke, St.T. (1986). In Vivo Antitumor Activity and in Vitro Cytotoxic Properties of Bis[1,2-bis(diphenylphosphino)ethane]gold(I)chloride. Cancer Research, 46, 5486–5493.PubMedGoogle Scholar
  12. Berners-Price, S.J., and Sadler, P.J. (1988). Phosphines and Metal Phosphine Complexes: Relationship of Chemistry to Anticancer and Other Biological Activity. Structure and Bonding, 70, 28–97.Google Scholar
  13. Bischoff, H., Berger, M.R., Keppler, B.K., and Schmähl, D. (1987). Efficacy of ß-Diketonato Complexes of Titanium, Zirconium, and Hafnium against Autochthonous Colonic Tumors in Rats. J. Cancer Res. Clin. Oncol. 113, 446–450.PubMedGoogle Scholar
  14. Clarke, M.J. (1980). Oncological Implications of the Chemistry of Ruthenium.In: H. Sigel (ed.), Metal Ions in Biological Systems, Vol. 11: Metal Complexes as Anticancer Agents, 231–276, Marcel Dekker, New York.Google Scholar
  15. Clarke, M.J. (1980). The Potential of Ruthenium in Anticancer Pharmaceuticals. Acs. Symp. Ser. (Am. Chem. Soc.) 140, 157–180.Google Scholar
  16. Clarke, M.J., Galang, R.D., Rodriguez, V.M., Kumar, R., Pell, S., Bryan, D.M. (1988). Chemical Considerations in the Design of Ruthenium Anticancer Agents. In: Nicolim,M. (ed.), Proc. of the 5th Int. Symp. on Platinum and other Metal Coordination Compounds in Cancer Chemotherapy, 582–600, Martinus Nijhoff Publishing, Boston.Google Scholar
  17. Collery, P., Millart, H., Simoneau, J.P., Pluot, M., Halpern, S., Pechery, C., Choisy, H., and Etienne, J.C. (1984). Experimental Treatment of Mammary Carcinomas by Gallium Chloride after Oral Administration: Intratumor dosages of gallium, anatomopathologic study and intracellular microanalysis. Trace Elements in Medicine, 1, 4, 159–161.Google Scholar
  18. Collery, P. (1989). Personal Communication.Google Scholar
  19. Curt, G.A., Allegra, C.J., Fine, R.L., Mujagic, H., Chao Yeh, G., and Chabner B.A. (1986). Cancer Chemotherapy. In: Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A5, 1–28, VCH Verlag Weinheim, FRG.Google Scholar
  20. Dimitrov, N.V., and Eastland, G.W. (1978). Antitumor Effect of Rhenium Carboxylates in Tumor-Bearing Mice. Int. Congr. Chemother., Proc. of the 10th, Current Chemother. 1977, 1319–1321.Google Scholar
  21. Eastland, G.W., Yang, G., and Thompson, T. (1983). Studies of Rhenium Carboxylates as Antitumor Agents. Part II. Antitumor Studies of Bis(µ-Propionato)Diaquotetra-bromodirhenium(III) in Tumor-Bearing Mice. Meth. and Find. Exptl. Clin. Pharmacol., 5 (7), 435–438.Google Scholar
  22. Ehninger, G., Haag, C., and Wilms, K. (1984). Die Pharmakokinetik von cis-Diaminodichloroplatin. TumorDiagnostik and Therapie, 5, 147–151.Google Scholar
  23. Elo, H.O., and Lumme, P.O. (1985). Antitumor Activity of trans-Bis(salicylaldoximato)cópper(ll): A Novel Antiproliferative Metal Complex. Cancer Treatment Rep., 69, 9, 1021–1022.Google Scholar
  24. Engel, J., Schönenberger, H., Lux, F., and Hilgard, P. (1987). Estrophilic Cisplatin Derivatives. Cancer Treatment Reviews, 14, 275–283.PubMedGoogle Scholar
  25. Erck, A., Rainen, L., Whileyman, J., Chang, J.M., Kimball, A.P., Bear, J. (1974) Studies of Rhodium(ll) Carboxylates as Potential Antitumor Agents. Proc. Soc. Exp. Biol. and Med.,145, 1278–1283.Google Scholar
  26. Francis, M.D., and Martodam, R.R. (1983). Chemical, Biochemical, and Medicinal Properties of the Diphosphonates. In: Hilderbrand, R.L. (ed.), The Role of Phosphonates in Living Systems. CRC Press, 55–96.Google Scholar
  27. Garzon, F.T., Berger, M.R., Keppler, B.K., and Schmähl, D. (1987). Paradoxical Effect of Dichlorobis(1-phenylbutane-1,3-dionato)molybdenum(IV), Mo(bzac))2C12, on the Growth of Autochthonous Chemically Induced Colorectal Tumors in SD-Rats. Cancer Letters, 34, 325–330.PubMedGoogle Scholar
  28. Garzon, F.T., Berger, M.R., Keppler, B.K., and Schmähl, D. (1987). Comparative Antitumor Activity of Ruthenium Derivatives with 5’-Deoxy-5-fluorouridine in Chemically Induced Colorectal Tumors in Sd Rats. Cancer Chemotherapy and Pharmacology, 19, 347–349.PubMedGoogle Scholar
  29. Garzon, F.T., Berger, M.R., Keppler, B.K., and Schmähl, D (1987).Google Scholar
  30. Activity of Heterocyclic Coordinated Ruthenium Derivatives on Experimental Acetoxymethylmethylnitrosamine-induced Colorectal Tumors in SD Rats. 5th NCI-EORTC Symposium on New Drugs in Cancer Therapy, Amsterdam, 22.-24.10. 1986, Invest. New Drugs, 5, 1, 84.Google Scholar
  31. Gill, D.S. (1984). Structure Activity Relationship of Antitumor Palladium Complexes. Dev. Oncol. 17, 267–278.Google Scholar
  32. Giraldi, T., Zassinovich, G., and Mestroni, G. (1974). Antitumor Action of Planar, Organometallic Rhodium(I) Complexes. Chem.-Biol. Interactions 9, 389–394.Google Scholar
  33. Giraldi, T., Sava, G., Bertoli, G., Mestroni, G., and Zassinovich, G. (1977).Google Scholar
  34. Antitumor Action of Two Rhodium and Ruthenium Complexes in Comparison with cisDiam m i n edichloroplatinum(l). Cancer Res. 37, 2662–2666.Google Scholar
  35. Goodwin, J.W., Kopecky, K., Slavik, M., Tranum, B.L., Balcerzak, St.P., Fletcher, W.S., and Costanzi, J.J. (1987). Phase II Evaluation of Spirogermanium in Malignant Melanoma: A Southwest Oncology Group Study. Cancer Treatment Rep., 71, 10, 985–986.Google Scholar
  36. Harrap, K.R. (1985). Preclinical Studies Identifying Carboplatin as a Viable Cisplatin Alternative. Cancer Treatment Rev., 12 ( Suppl. A), 21–33.Google Scholar
  37. Hart, M.M., and Adamson, R.H. (1971). Antitumor Activity and Toxicity of Salts of Inorganic Group IIIa Metals: Aluminum, Gallium, Indium, and Thallium. Proc. Nat. Acad. Sci. USA, 68, 7, 1623–1626.PubMedGoogle Scholar
  38. Hart, M.M., Smith, C.F., Yancey, S.T., and Adamson, R.H. (1971). Toxicity and Antitumor Activity of Gallium Nitrate and Periodically Related Metal Salts. Journal of the National Cancer Institute, 47, 5, 1121–1127.PubMedGoogle Scholar
  39. Heim, M.E., and Keppler, B.K. (1989). Clinical Studies with Budotitane–A New non-Platinum Metal Complex for Cancer Therapy. Progress in Clin. Biochemistry and Medicine, 10, 217–223.Google Scholar
  40. Hill, B.T., Whatley, S.A., Bellamy, A.S., Jenkins, L.Y., and Whelan, R.D.H. (1982). Cytotoxic Effects and Biological Activity of 2-Aza-8-germanspiro[4,5]decane-2propanamine-8,8-diethyl-N,N-dimethyl Dichloride (NSC 192965; Spirogermanium) in Vitro. Cancer Res., 42, 2852–2856.PubMedGoogle Scholar
  41. Hodnett, E.M., Moore, Ch.H., and French, F.A. (1971). Cobalt Chelates of Schiff Bases of Aromatic Amines as Antitumor Agents. J. Medicinal Chem., 14, 11, 1121–1123.Google Scholar
  42. Hopkins, S.J. (1980). Ge-132. Drugs of the Future, V, 11, 545–546.Google Scholar
  43. Howard, R.A., Sherwood, E., Erck, A., Kimball, A.P., Bear, J.L. (1977).Google Scholar
  44. Hydrophobicity of Several Rhodium(II) Carboxylates Correlated with Their Biologic Activity. J. Medicinal Chem.,20, 7, 943–946.Google Scholar
  45. Jennerwein, M., Wappes, B., Gust, R., Schönenberger, H., Engel, J., Seeber, S., and Osieka, R. (1988). Influence of Ring Substituents on the Antitumor Effect of Dichloro(1,2-diphenylethylenediamine)platinum(II) Complexes. J. Cancer Res. Clin. Oncol., 114, 347–358.PubMedGoogle Scholar
  46. Karl, J., Gust, R., and Spruss, Th. (1988). Ring-Substituted [1,2-Bis(4-hydroxyphenyl)ethylenediamine]dichloroplatinum(II) Complexes: Comparison with a Selective Effect on the Hormone-Dependent Mammary Carcinoma. J. Medicinal Chem., 31, 72–83.Google Scholar
  47. Keller, H.J., Keppler, B.K., and Schmähl, D. (1982). Antitumor Activity of cisDihalogenobis(1-phenyl-1,3-dionato)titanium(IV) Compounds against Walker 256 Carcinosarcoma. Arzneim.-Forsch./Drug Res. 32 (II), 8, 806–807.Google Scholar
  48. Keller, H.J., Keppler, B.K., and Schmähl, D. (1983). Antitumor Activity of cisDihalogenobis(1-phenyl-1,3-dionato)titanium(IV) Compounds. J. Cancer Res. Clin. Oncol. 105, 109–110.PubMedGoogle Scholar
  49. Kempf, S.R., and Ivankovic, S. (1986). Carcinogenic Effect of Cisplatin (cis-Diamminedichloroplatinum(II), CDDP) in BD IX Rats. J. Cancer Res. Clin. Oncol., 111, 133–136.PubMedGoogle Scholar
  50. Kempf, S.R., and Ivankovic, S. (1986). Chemotherapy-Induced Malignancies in Rats after Treatment with Cisplatin as a Single Agent and in Combination: Preliminary Studies. Oncology, 43, 187–191.PubMedGoogle Scholar
  51. Keppler, B.K., and Michels, K. (1985). Antitumor Activity of 1,3-Diketonato Zirconium(IV) and Hafnium(IV) Complexes. Arzneim.-Forsch./Drug Res. 35 (II), 12, 1837–1839.Google Scholar
  52. Keppler, B.K., Diez, A., and Seifried, V. (1985). Antitumor Activity of Phenyl Substituted Dihalogenobis(1 henyl-1,3-butanedionato)titanium(IV) Complexes. Arzneim.-Forsch./Drug Res. 35 (II), 12, 1832–1836.Google Scholar
  53. Keppler, B.K., and Rupp, W. (1986). Antitumor Activity of Imidazolium-bis(imidazole)tetrachlororuthenate(III). J. Cancer Res. Clin. Oncol. 111, 166–168.PubMedGoogle Scholar
  54. Keppler, B.K., and Schmähl, D. (1986). Preclinical Evaluation of Dichlorobis(1 henylbutane-1,3-dionato)titanium(IV) and Budotitane. Arzneim.-Forsch./Drug Res. 36 (II), 12, 1822–1828.Google Scholar
  55. Keppler, B.K. (1987). Metallkomplexe in der Krebstherapie. Nachr. Chem. Tech. Lab., 35, 10, 1029–1036.Google Scholar
  56. Keppler, B.K., Balzer, W., and Seifried, V. (1987). Synthesis and Antitumor Activity of Triazolium-bis(triazole)tetrachlororuthenate(III) and Bistriazolium-triazolepentachlororuthenate(lII). Arzneim.-Forsch./Drug Res. 37(11), 7, 770–771.Google Scholar
  57. Keppler, B.K., Wehe, D., Endres, H., and Rupp, W. (1987). Synthesis, Antitumor Activity, and X-Ray Structure of Bis(imidazolium)imidazolepentachlororuthenate(III), (ImH)2(RuImC15). Inorganic Chemistry, 26 (6), 844–846.Google Scholar
  58. Keppler, B.K., Rupp, W., Endres, H., Niebl, R., and Balzer, W. (1987). Synthesis, Molecular Structure, and Tumor-inhibiting Properties of Imidazolium-bis(imidazole)tetrachlororuthenate(III) and its Methyl-Substituted Derivatives. Inorganic Chemistry, 26, 4366–4370.Google Scholar
  59. Keppler, B.K., Garzon, F.T., Rupp, W., Niebl, R., Juhl, U.M., Berger, M.R., and Schmähl, D. (1987). Preclinical Evaluation of New Tumor-Inhibiting Ruthenium Compounds. Proc. 4th SEK Symp., Heidelberg, 18.-21.3.1987, J. Cancer Res. Clin. Oncol., Suppl. to Vol. 113.Google Scholar
  60. Keppler, B.K., Bischoff, H., Berger, M.R., Heim, M.E., Reznik, G., and Schmähl, D. (1988). Preclinical Development and First Clinical Studies of Budotitane. ISPCC 1987, Padua; In: Nicolini, M. (Ed.), Proc. 5th Int. Symp. on Platinum and other Metal Coordination Complexes in Cancer Chemotherapy, Martinus Nijhoff Publishing, Boston, 684–694.Google Scholar
  61. Keppler, B.K., and Heim, M.E. (1988). Antitumor-Active Bis-ß-Diketonato Metal Complexes: Budotitane–A New Anticancer Agent. Drugs of the Future, 13, 5–6, 637–652.Google Scholar
  62. Keppler, B.K., Henn, M., Juhl, U.M., Berger, M.R., Niebl, R.E., and Wagner, F.E. (1989). New Ruthenium Complexes for the Treatment of Cancer. Progress in Clinical Biochemistry and Medicine, 10, 41–70.Google Scholar
  63. Keppler, B.K., Heim, M.E., Flechtner, H., Wingen, F., and Pool, B.L. (1989). Assessment of the Antitumor Activity of Budotitane in Three Different Transplantable Tumor Models, its Lack of Mutagenicity, and First Results of Clinical Phase I Studies. Arzneim.-Forsch./Drug Res. 39 (I), 6, 706–709.Google Scholar
  64. Keppler, B.K., and Vongerichten, H. (1989).Google Scholar
  65. Klenner, T., Keppler, B.K., Amelung, F., and Schmähl, D (1989). Aminotris(methylenephosphonato)diaminoplatinum(II) [AMDP], a New Anticancer Agent Superior to Cisplatin (CDDP) in the Transplantable Rat Osteosarcoma. 5. SEK-Symposium, Heidelberg, 10.-12.4.1989, Suppl. J. Cancer Res. Clin. Oncol. 115, TH 5.Google Scholar
  66. Klenner, T., Miinch, H., Wingen, F., Schmähl, D, and Keppler, B.K. (1988). Efficacy of New Cisplatin-linked Bisphosphonates in Transplantable Rat Osteosarcoma. Proc. 19th National Cancer Congress, Frankfurt, 28.2.-5.3.1988, J. Cancer Res. Clin. Oncol., Suppl. to Vol. 114.Google Scholar
  67. Knebel, N., and von Angerer, E. (1988). Platinum Complexes with Binding Affinity for the Estrogen Receptor. J. Medicinal Chem., 31, 1675–1679.Google Scholar
  68. Knebel, N., Schiller, Cl.-D., Schneider, M.R., Schönenberger, H., and von Angerer, E. (1989). Carrier Mediated Action of Platinum Complexes on Estrogen Receptor Positive Tumors. Eur. J. Cancer Clin. OncoL, 25, 2, 293–299.PubMedGoogle Scholar
  69. Kociba, R.J., Sleight, S.D., and Rosenberg, B. (1970). Inhibition of Dunning Ascitic Leukemia and Walker 256 Carcinosarcoma with cis-Diamminedichloroplatinum (NSC 119875). Cancer Chemotherapy Reports (Part 1), 54, 5, 325–328.Google Scholar
  70. Köpf-Maier, P., and Köpf, H. (1988). Transition and Main-Group Metal Cyclopentadienyl Complexes: Preclinical Studies on a Series of Antitumor Agents of Different Structural Type. Structure and Bonding, 70, 105–181.Google Scholar
  71. Köpf-Maier, P., and Köpf, H. (1988). Antitumor Cyclopentadienyl Metal Complexes: Current Status and Recent Pharmacological Results. In: Gielen, M.F. (ed.), Metal-Based Anti-tumour Drugs, Freund Publishing House, London, 55–102.Google Scholar
  72. Krakoff, I.H. (1988). The Development of More Effective Platinum Therapy. In: M. Nicolini (ed.), Proc. of the 5th Int. Symp. on Platinum and other Metal Coordination Compounds in Cancer Chemotherapy, Martinus Nijhoff Publishing, Boston, 351–354.Google Scholar
  73. Kumano, N., Nakai, Y., Ishikawa, T., Koinumaru, S., Suzuki, S., Kikumoto, T., and Konno, K. (1980). Antitumor Effect of Organogermanium Compound (Ge-132) in Mouse Tumors. In: Nelson, J.D., and Grassi, C. (eds.), Current Chemotherapy and Infectious Disease, Proc. Int. Congr. Chemother. 11th, 1979, Am. Soc. Microbiol.,Washington, 1525–1527.Google Scholar
  74. Kumano, N., Ishikawa, T., Koinumaru, S., Kikumoto, T., Suzuki, S., Nakai, Y., and Konno, K. (1985). Antitumor Effect of the Organogermanium Compound Ge-132 on the Lewis Lung Carcinoma (3LL) in C57BL/6 (B6) Mice. Tohuku J. Exp. Med., 146, 97–104.Google Scholar
  75. Leopold, W.R., Miller, E.C., and Miller, J.A. (1979). Carcinogenicity of Antitumor cisPlatinum(11) Coordination Complexes in the Mouse and Rat. Cancer Res., 39, 913–918.PubMedGoogle Scholar
  76. Lewis, A.J., and Walz, D.T. (1982). Immunopharmacology of Gold. In: G.P. Ellis, G.B. West (eds.), Progress in Medicinal Chem., 19, Elsevier Biomedical Press, 2–49.Google Scholar
  77. Lippard, St.J. (1981). Binding of the Antitumor Drug cis-Diamminedichloroplatinum(ll) to DNA and to the Nucleosome Core Particle. In: Ramaswamy H. Sarma (ed.), Bio-molecular Stereodynamics, Vol. II, 165–183, Adenine Press, New York.Google Scholar
  78. Litterst, Ch.L., LeRoy, A.F., Guarino, A.M. (1979). Disposition and Distribution of Platinum Following Parental Administration of cis-Dichlorodiammineplatinum(II) to Animals. Cancer Treatment Rep., 63, 9–10, 1485–1492.Google Scholar
  79. Lumme, P., Elo, H., and Jänne, J. (1984). Antitumor Activity and Metal Complexes of the First Transition Series. Trans-bis(salicylaldoximato)copper(II) and Related Copper(II) Complexes, a Novel Group of Potential Antitumor Agents. Inorganica Chimica Acta, 92, 241–251.Google Scholar
  80. Lumme, P.O., and Elo, H.O. (1985). Antitumor Activity and Metal Complexes, a Comparison. Inorganica Chimica Acta, 107, L15 - L16.Google Scholar
  81. Mattem, J., Keppler, B.K., and Volm, M. (1984). Preclinical Evaluation of Diethoxy(1phenyl-1,3-dionato)titanium(IV) in Human Tumor Xenografts. Arzneim.-Forsch./Drug Res. 34 (II), 10, 1289–1290.Google Scholar
  82. Miyao, K., Onishi, T., Asai, K., Tomizawa, S., and Suzuki, F. (1980). Toxicology and Phase I Studies on a Novel Organogermanium Compound, Ge-132. In: Nelson, J.D., and Grassi, C. (eds.), Current Chemotherapy and Infectious Disease, Vol. II, 1527–1529.Google Scholar
  83. Peyrone, M. (1844). Über die Einwirkung des Ammoniak auf Platinchlorür. Annalen der Chemie und Pharmacie, LI, 1 ff.Google Scholar
  84. Pinto, A.L., and Lippard, St.J. (1985). Binding of the Antitumor Drug cis-Diamminedichloroplatinum(II) (Cisplatin) to DNA. Biochimica et Biophysica Acta, 780, 167–180.PubMedGoogle Scholar
  85. Pöldinger, W. (1982). Kompendium der Psychopharmakotherapie. Editiones Roche; Basel, 126.Google Scholar
  86. Prestayko, A.W. (1981). Clinical Pharmacology of Cisplatin. Cancer and Chemotherapy, III, 351–356.Google Scholar
  87. Reedijk, J. (1987). The mechanism of action of platinum anti-tumor drugs. Pure AppL Chem., 59 (2), 181–192.Google Scholar
  88. Rose, W.C., and Schurig, J.E. (1985). Preclinical Antitumor and Toxicologic Profile of Carboplatin. Cancer Treatment Rev., 12 ( Suppl. A), 1–19.Google Scholar
  89. Rosenberg, B., and VanCamp, L. (1969). Platinum Compounds: A New Class of Potent Antitumor Agents. Nature, 222, 385–386.PubMedGoogle Scholar
  90. Rosenberg, B., and VanCamp, L. (1970). The Successful Regression of Large Solid Sarcoma 180 Tumors by Platinum Compounds. Cancer Res., 304, 1799–1802.Google Scholar
  91. Rosenberg, B. (1975). Possible Mechanisms for the Antitumor Activity of Platinum Coordination Complexes. Cancer Chemotherapy Rep. (Part 1), 59, 3, 589–598.Google Scholar
  92. Rosenberg, B. (1978). Platinum Complexes for the Treatment of Cancer. Interdisciplinary Science Reviews, 3, 2, 134–147.Google Scholar
  93. Rosenberg, B. (1978). Platinum Complex–DNA Interactions and Anticancer Activity. Biochemie, 60, 859–867.Google Scholar
  94. Sadler, P.J., Nasr, M., and Narayanan, V.L. (1984). The Design of Metal Complexes as Anticancer Agents. Proc. of the 4th Int. Symp. on Platinum Coordination Complexes in Cancer Chemotherapy, 290–304, Martinus Nijhoff Publishing, Boston.Google Scholar
  95. Sava, G., Giraldi, T., Mestroni, G., and Zassinovich, G. (1983). Antitumor Effects of Rhodium(I), Iridium (I), and Ruthenium(II) Complexes in Comparison with cis-Dichlorodiamminoplatinum(II). Chem.-Biol. Interactions, 45, 1–6.Google Scholar
  96. Sava, G., Zorzet, S., Giraldi, T., Mestroni, G., and Zassinovich, G. (1984). Antineoplastic Activity and Toxicity of an Organometallic Complex of Ruthenium(II) in Comparison with cis-PDD in Mice Bearing Solid Malignant Neoplasms. Eur. J. Cancer Clin. Oncol., 20, 6, 841–847.PubMedGoogle Scholar
  97. Sava, G., Zorzet, S., Mestroni, G., and Zassinovich, G. (1985). Antineoplastic Activity of Planar Rhodium(I) Complexes in Mice Bearing Lewis Lung Carcinoma and P 388 Leukemia. Anticancer Res. 5, 249–252.PubMedGoogle Scholar
  98. Scher, H.J., Curley, T., Geller, N., Dershaw, D., Chan, E., Nisselbaum, J., Alcock, N., Hollander, P., and Yagoda, A. (1987). Gallium Nitrate in Prostatic Cancer: Evaluation of Antitumor Activity and Effects on Bone Turnover. Cancer Treatment Rep., 71, 10, 887–893.Google Scholar
  99. Schmähl, D., and Berger, M.R. (1988). Possibilities and Limitations of Antineoplastic Chemotherapy: Experimental and Clinical Aspects. Int. J. Exp. Clin. Chemother. 1, 1–11.Google Scholar
  100. Schönenberger, H., Wappes, B., Jennerwein, M., and Berger, M. (1984). Entwicklung selektiv wirkender Platinkomplexe. In: S. Seeber et al. (eds.), Beiträge zur Onkologie, Bd. 18, 48–57, S. Karger Verlag Basel.Google Scholar
  101. Schwartz, S., and Yagoda, A. (1984). Phase I-II Trial of Gallium Nitrate for Advanced Hypernephroma. Anticancer Res., 4, 317–318.PubMedGoogle Scholar
  102. Sherman, S E, Gibson, D., Wang, A.H.-J., and Lippard, St.J. (1985). X-Ray Structure of the Major Adduct of Anticancer Drug Cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG)]. Science, 230, 412–417.PubMedGoogle Scholar
  103. Sherman, S E, and Lippard, St.J. (1987). Structural Aspects of Anticancer Drug Interactions with DNA. Chem. Rev., 87, 1153–1181.Google Scholar
  104. Simon, T.M., Kunishima, D.H., Vibert, G.J., and Lorber, A. (1981). Screening Trial with the Coordinated Gold Compound Auranofin Using Mouse Lymphocytic Leukemia P 388. Cancer Research, 41, 94–97.PubMedGoogle Scholar
  105. Slavik, M., Elias, L., Mrema, J., and Saiers, J.H. (1982). Laboratory and Clinical Studies of Spirogermanium, a Novel Heterocyclic Anticancer Drug. Drugs Exptl. Clin. Res. VIII (4), 379–385.Google Scholar
  106. Slavik, M., Blanc, O., and Davis, J. (1983). Spirogermanium: A New Investigational Drug of Novel Structure and Lack of Bone Marrow Toxicity. Invest. New Drugs, 1, 225–234.PubMedGoogle Scholar
  107. Sternberg, C., Cheng, E., and Sordillo, P. (1984). Phase II Trial of 1,2-Diaminocyclohexane-(4-carboxyphthalato)platinum(II) (DACCP) in Colorectal Carcinoma. Am. J. Clin. Oncol. (CCT), 7, 503–505.Google Scholar
  108. Sugiya, Y., Sugita, T., Sakamaki, S., Abo, Y., and Satoh, H. (1986). Subacute and Chronic Intraperitoneal Toxicity of Carboxyethylgermaniumsesquioxide (Ge-132) in Rats. Oyo Yakuri, 32 (1), 93–111.Google Scholar
  109. Suzuki, F., Brutkiewicz, R.R., and Pollard, R.B. (1985). Ability of Sera from Mice Treated with Ge-132, an Organic Germanium Compound, to Inhibit Experimental Murine Ascites Tumours. Br. J. Cancer, 757–763.Google Scholar
  110. Suzuki, F., Brutkiewicz, R.R., and Pollard, R.B. (1985) Importance of T-Cells and Macrophages in the Antitumour Activity of Carboxyethylgermanium Sesquioxide (Ge-132). Anticancer Res., 5, 479–484.PubMedGoogle Scholar
  111. Tsuruo, T., Lida, H., Tsukagoshi, S., and Sakurai, Y. (1980). Growth Inhibition of Lewis Lung Carcinoma by an Inorganic Dye, Ruthenium Red. Gann, 71, 151–154.PubMedGoogle Scholar
  112. Tsutsui, M., Kakimoto, N., Axtell, D.D., Oikawa, H., and Asai, K. (1976). Crystal Structure of Carboxyethylgermanium Sesquioxide. J. Am. Chem. Soc., 98, 25, 8287–8289.Google Scholar
  113. USAN (1980). Spirogermanium Hydrochloride. Drugs of the Future, V, 3, 149–151.Google Scholar
  114. Vermorken, J.B., ten Bokkel Huinink, W.W., McVie, J.G., van der Vijgh, W.J.F., and Pinedo, H.M. (1984). Clinical Experience with 1,1-Diaminomethylcyclohexane (Sulfato) Platinum(II) (TNO-6). Dev. OncoL, 17, 330–343.Google Scholar
  115. Vermorken, J.B., Winograd, B., van der Vijgh, W.J.F. (1985). Clinical Pharmacology of Cisplatin and Some New Platinum Analogs. Recent Adv. Chemother., Proc. Int. Congr. Chemother., 14th, 96–99.Google Scholar
  116. Voegeli, R., Pohl, J., Hilgard, P., Engel, J., Schumacher, W., Brunner, H., Schmidt, M., Holzinger, U., and Schönenberger, H. (1988). Synthesis and Therapeutic Effect of New cis-Platinum Complexes on Experimental Tumors. In: Nicolini, M. (ed.), Proc. of the 5th Int. Symp. on Platinum and other Metal Coordination Compounds in Cancer Chemo-therapy, Martinus Nijhoff Publishing, Boston, 343–350.Google Scholar
  117. von Heyden, H.W., Weinstock, N., Schaper, R., Beyer, J.-H., Nagel, G.A., and Seidel, D. (1980). Platinkinetik: Literaturübersicht und erste eigene Ergebnisse. In: S. Seeber et al. (eds.), Beiträge zur Onkologie, Band 3, S. Karger Verlag Basel.Google Scholar
  118. Ward, S.G., and Taylor, R.C. (1988). Anti-Tumor Activity of the Main-Group Metallic Elements: Aluminum, Gallium, Indium, Thallium, Germanium, Lead, Antimony, and Bismuth. In: Gielen, M.F. (ed.), Metal-Based Anti-Tumour Drugs, Freund Publishing House, London, 1–54.Google Scholar
  119. Wingen, F., and Schmähl, D. (1985). Distribution of 3-Amino-l-hydroxypropane-1,1diphosphonic Acid in Rats and Effects on Rat Osteosarcoma. Arzneim.-Forsch./Drug Res. 35 (II), 10, 1565–1571.Google Scholar
  120. Zeller, W.J., and Berger, M.R. (1984). Chemically Induced Autochthonous Tumor Models in Experimental Chemotherapy. Behring Inst. Mitt. 74, 201–208.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • B. K. Keppler
    • 1
  1. 1.Anorganisch-Chemisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations