Skip to main content

Signals and Structures Involved in Early Interactions between Plants and Viruses or Pseudoviruses

  • Conference paper
Recognition and Response in Plant-Virus Interactions

Part of the book series: NATO ASI Series ((ASIH,volume 41))

Abstract

One mechanism by which stable plant RNA virus particles might be disassembled in vivo involves recruitment of cell factors and ribosomes by a short, easily exposed portion of RNA. No cell specificity exists during virus uptake or early cotranslational disassembly. Virus-like reporter ribonucleocapsids were synthesized in vitro to study the mechanism, sequence-dependence and site of disassembly and transient gene expression without concomitant replication. “Pseudoviruses” and transcapsidated viral RNAs can elucidate the mechanism(s) of genetically engineered, coat protein-mediated cross-protection in electroporated tobacco protoplasts or plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AbouHaidar MG, Hirth L (1977) 5’ terminal structure of tobacco rattle virus RNA: evidence for polarity of reconstitution. Virology 76:173–185

    Article  Google Scholar 

  • Allan EF, Hepler PK (1989) Calmodulin and calcium-binding proteins. In: Marcus A (ed) The biochemistry of plants. Vol. 15. Academic Press, San Diego, p 455

    Google Scholar 

  • Atreya CD, Siegel A (1989) Localization of multiple TMV encapsidation initiation sites on rbcL gene transcripts. Virology 168:388–392

    Article  PubMed  CAS  Google Scholar 

  • Bendena WG, AbouHaidar MG, Mackie GA (1985) Synthesis in vitro of the coat protein of papaya mosaic virus. Virology 140:257–268

    Article  PubMed  CAS  Google Scholar 

  • Bergh ST, Siegel A (1989) Intraviral homology and subgenomic RNAs of pepper ringspot virus. Virology 168:339–343

    Article  PubMed  CAS  Google Scholar 

  • Brisco MJ, Hull R, Wilson TMA (1985) Southern bean mosaic virus-specific proteins are synthesized in an in vitro system supplemented with intact, treated virions. Virology 143:392–398

    Article  PubMed  CAS  Google Scholar 

  • Brisco MJ, Hull R, Wilson TMA (1986) Swelling of isometric and of bacilliform plant virus nucleocapsids is required for virus-specific protein synthesis in vitro. Virology 148:210–217

    Article  PubMed  CAS  Google Scholar 

  • De Zoeten GA, Fulton RW (1975) Understanding generates possibilities. Phytopathology 65:221–222

    Google Scholar 

  • Dodds JA, Lee SQ, Tiffany M (1985) Cross protection between strains of cucumber mosaic virus: effect of host and type of inoculum on accumulation of virions and double-stranded RNA of the challenge strain. Virology 144:301–309

    Article  PubMed  CAS  Google Scholar 

  • Dore I, Weiss E, Altschuh D, Van Regenmortel MHV (1988) Visualization by electron microscopy of the location of tobacco mosaic virus epitopes reacting with monoclonal antibodies in enzyme immunoassay. Virology 162:279–289

    Article  PubMed  CAS  Google Scholar 

  • Dorokhov YL, Alexandrova NM, Miroschnichenko NA, Atabekov JG (1984) The informosome-like virus-specific ribonucleoprotein (vRNP) may be involved in the transport of tobacco mosaic virus infection. Virology 137:127–134

    Article  PubMed  CAS  Google Scholar 

  • Durham ACH (1972) Structures and roles of the polymorphic forms of tobacco mosaic virus protein. J Mol Biol 67:289–305

    Article  PubMed  CAS  Google Scholar 

  • Durham ACH (1978) The roles of small ions, especially calcium, in virus disassembly, take-over, and transformation. Biomedicine 28:307–314

    PubMed  CAS  Google Scholar 

  • Durham ACH, Finch JT, Klug A (1971) States of aggregation of tobacco mosaic virus protein. Nature New Biol 229:37–42

    PubMed  CAS  Google Scholar 

  • Durham ACH, Hendry DA, Von Wechmar MB (1977) Does calcium ion binding control plant virus disassembly? Virology 77:524–533

    Article  PubMed  CAS  Google Scholar 

  • Fannin FF, Shaw JG (1987) Evidence for concurrent spread of tobacco mosaic virus from infected epidermal cells to neighbouring epidermal and mesophyll cells. Plant Sci 51:305–310

    Article  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987a) In vivo uncoating and efficient expression of foreign mRNAs packaged in TMV-like particles. Science 236:1122–1124

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987b) The 5’-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res 15:3257–3273

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987c) A comparison of eukaryotic viral 5’-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res 15:8693–8711

    Article  PubMed  CAS  Google Scholar 

  • Goelet P, Karn J (1984) Methods for cDNA cloning and sequencing tobacco mosaic virus RNA. Gene 29:331–342

    Article  PubMed  CAS  Google Scholar 

  • Goelet P, Lomonossoff GP, Butler PJG, Akam ME, Gait MJ, Karn J (1982) Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA 79:5818–5822

    Article  PubMed  CAS  Google Scholar 

  • Jupin I, Sleat DE, Watkins PAC, Wilson TMA (1989) Direct recovery of in vitro transcripts in a protected form suitable for prolonged storage and shipment at ambient temperatures. Nucleic Acids Res 17:815

    Article  PubMed  CAS  Google Scholar 

  • Keeling J, Matthews REF (1982) Mechanism for release of RNA from turnip yellow mosaic virus at high pH. Virology 119:214–218

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108:229–241

    Article  PubMed  CAS  Google Scholar 

  • Laidlaw WMR (1987) A new method for mechanical virus transmission and factors affecting its sensitivity. EPPO Bull 17:81–89

    Article  Google Scholar 

  • Namba K, Stubbs G (1986) Structure of tobacco mosaic virus at 3.6A resolution: implications for assembly. Science 231:1401–1406

    Article  PubMed  CAS  Google Scholar 

  • Namba K, Pattanayek R, Stubbs G (1989) Visualization of protein-nucleic acid interactions in a virus. J Mol Biol 208:307–325

    Article  PubMed  CAS  Google Scholar 

  • Niblett CL, Dickson E, Fernow KH, Horst RK, Zaitlin M (1978) Cross protection among four viroids. Virology 91:198–203

    Article  PubMed  CAS  Google Scholar 

  • Okamoto S, Machida Y, Takebe I (1988) Subcellular localization of tobacco mosaic virus minus strand RNA in infected protoplasts. Virology 167:194–200

    Article  PubMed  CAS  Google Scholar 

  • Osboura JK, Watts JW, Beachy RN, Wilson TMA (1989) Evidence that nucleocapsid disassembly and a later step in virus replication are inhibited in transgenic tobacco protoplasts expressing TMV coat protein. Virology 172: in press

    Google Scholar 

  • Perham RN (1969) Sucrose density-gradient analysis of the alkaline degradation of tobacco mosaic virus. J Mol Biol 45:439–441

    Article  PubMed  CAS  Google Scholar 

  • Plaskitt KA, Watkins PAC, Sleat DE, Gallie DR, Shaw JG, Wilson TMA (1988) Immunogold labeling locates the site of disassembly and transient gene expression of tobacco mosaic virus-like pseudovirus particles in vivo. Mol Plant-Microbe Interact 1:10–16

    Article  Google Scholar 

  • Powell Abel P, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  Google Scholar 

  • Register JC, Beachy RN (1988) Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166:524–532

    Article  PubMed  CAS  Google Scholar 

  • Roenhorst JW, Verduin BJM, Goldbach RW (1989) Virus-ribosome complexes from cell-free translation systems supplemented with cowpea chlorotic mottle virus particles. Virology 168:138–146

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Smitamana P (1981) A proteinless mutant of tobacco mosaic virus: evidence against the role of a viral coat protein for interference. Mol Gen Genet 184:158–159

    Article  PubMed  CAS  Google Scholar 

  • Shaw JG, Plaskitt KA, Wilson TMA (1986) Evidence that tobacco mosaic virus particles disassemble cotranslationally in vivo. Virology 148:326–336

    Article  PubMed  CAS  Google Scholar 

  • Sherwood JL, Fulton RW (1982) The specific involvement of coat protein in tobacco mosaic virus cross protection. Virology 119:150–158

    Article  PubMed  CAS  Google Scholar 

  • Shirako Y, Ehara Y (1986) Comparison of the in vitro translation products of wild-type and a deletion mutant of soil-borne wheat mosaic virus. J Gen Virol 67:1237–1245

    Article  CAS  Google Scholar 

  • Sleat DE, Turner PC, Finch JT, Butler PJG, Wilson TMA (1986) Packaging of recombinant RNA molecules into pseudovirus particles directed by the origin-of-assembly sequence from tobacco mosaic virus RNA. Virology 155:299–308

    Article  PubMed  CAS  Google Scholar 

  • Sleat DE, Gallie DR, Jefferson RA, Bevan MW, Turner PC, Wilson TMA (1987) Characterisation of the 5’-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene 60:217–225

    Article  PubMed  CAS  Google Scholar 

  • Sleat DE, Gallie DR, Watts JW, Deom CM, Turner PC, Beachy RN, Wilson TMA (1988a) Selective recovery of foreign gene transcripts as virus-like particles in TMV-infected transgenic tobaccos. Nucleic Acids Res 16:3127–3140

    Article  PubMed  CAS  Google Scholar 

  • Sleat DE, Hull R, Turner PC, Wilson TMA (1988b) Studies on the mechanism of translational enhancement by the 5’-leader sequence of tobacco mosaic virus RNA. Eur J Biochem 175:75–86

    Article  PubMed  CAS  Google Scholar 

  • Turner DR, Joyce LE, Butler PJG (1988) The tobacco mosaic virus assembly origin RNA: Functional characteristics defined by directed mutagenesis. J Mol Biol 203:531–547

    Article  PubMed  CAS  Google Scholar 

  • Tyc K, Konarska M, Gross HJ, Filipowicz W (1984) Multiple ribosome binding to the 5’-terminal leader sequence of tobacco mosaic virus RNA. Assembly of an 80S ribosome mRNA complex at the AUU codon. Eur J Biochem 140:503–511

    CAS  Google Scholar 

  • Willingmann P, Barnert H, Zeichhardt, H, Habermehl K-O (1989) Recovery of structurally intact and infectious poliovirus type 1 from HeLa cells during receptor-mediated endocytosis. Virology 168:417–420

    Article  PubMed  CAS  Google Scholar 

  • Wilson TMA (1984a) Cotranslational disassembly of tobacco mosaic virus in vitro. Virology 137:255–265

    Article  PubMed  CAS  Google Scholar 

  • Wilson TMA (1984b) Cotranslational disassembly increases the efficiency of expression of TMV RNA in wheat germ cell-free extracts. Virology 138:353–356

    Article  PubMed  CAS  Google Scholar 

  • Wilson TMA (1986) Expression of the large 5’-proximal cistron of tobacco mosaic virus by 70S ribosomes during cotranslational disassembly in a prokaryotic cell-free system. Virology 152: 277–279

    Article  PubMed  CAS  Google Scholar 

  • Wilson TMA, Shaw JG (1985) Does TMV uncoat cotranslationally in vivo? Trends Biochem Sci 10:57–60.

    Article  Google Scholar 

  • Wilson TMA, Shaw JG (1987) Cotranslational disassembly of filamentous plant virus nucleocapsids in vitro and in vivo. In: Brinton MA, Rueckert RR (eds) Positive strand RNA viruses. UCLA Symp Molec Cell Biol Vol. 54. Alan Liss, New York p 159

    Google Scholar 

  • Wilson TMA, Watkins PAC (1986) Influence of exogenous viral coat protein on the cotranslational disassembly of tobacco mosaic virus (TMV) particles in vitro. Virology 149:132–135

    Article  PubMed  CAS  Google Scholar 

  • Wilson TMA, Perham RN, Butler PJG (1978) Intermediates in the disassembly of tobacco mosaic virus at alkaline pH. Virology 89:475–483

    Article  PubMed  CAS  Google Scholar 

  • Zaitlin M (1976) More understanding is needed. Phytopathology 66:382–383

    Article  Google Scholar 

  • Zaitlin M, Hull R (1987) Plant virus-host interactions. Annu Rev Plant Physiol 38:291–315

    Article  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilson, T.M.A., Plaskitt, K.A., Watts, J.W., Osbourn, J.K., Watkins, P.A.C. (1990). Signals and Structures Involved in Early Interactions between Plants and Viruses or Pseudoviruses. In: Fraser, R.S.S. (eds) Recognition and Response in Plant-Virus Interactions. NATO ASI Series, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74164-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74164-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74166-1

  • Online ISBN: 978-3-642-74164-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics