Skip to main content

The Use and Misuse of Viruses in Cloning and Expression in Plants

  • Conference paper
Recognition and Response in Plant-Virus Interactions

Part of the book series: NATO ASI Series ((ASIH,volume 41))

Abstract

Plant viruses have attracted considerable attention as possible vectors for introducing “foreign” genes into plants. Two basic systems have been studied: integration of viral sequences into the host chromosome, and use as episomal vectors. Integrated promoter sequences from DNA viruses, primarily the cauliflower mosaic virus 35S promoter, have been used successfully. Episomal vectors have been constructed both from DNA and RNA viral sequences for both the transient and the constitutive expression of genes; some major problems remain to be fully overcome. The use of viral sequences in plants, whether as gene vectors or to confer non-conventional forms of resistance, raises the possibility that there may be risks on the field release of modified plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bancroft JB (1970) The self-assembly of spherical plant viruses. Adv Virus Res 16:99–134

    Article  PubMed  CAS  Google Scholar 

  • Benfrey PN, Ren L, Chua N-H (1989) The CaMV 35S enhancer contains at least two domains which can confer differential developmental and tissue-specific expression patterns. EMBO J 8:2195–2202

    Google Scholar 

  • Boulton MI, Buchholz WG, Marks MS, Markham PG, Davies JW (1989a) Specificity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol Biol 12:31–40

    Article  CAS  Google Scholar 

  • Boulton MI, Steinkeller H, Donson J, Markham PG, King DI, Davies JW (1989b) Mutational analysis of the virion-sense genes of maize streak virus. J Gen Virol (in press)

    Google Scholar 

  • Brisson N, Paszkowski J, Penswick JR, Gronenborn B, Potrykus L ,Hohn T (1984) Expression of a bacterial gene in plants by using a viral vector. Nature 310:511–514

    Article  CAS  Google Scholar 

  • Buck KW, Coutts RHA (1983) The potential of geminiviruses in the construction of plant host vector systems. Plant Mol Biol 2:351–357

    Article  Google Scholar 

  • Bujarski JJ, Kaesberg P (1986) Genetic recombination between RNA components of a multipartite plant virus. Nature 321:528–531

    Article  PubMed  CAS  Google Scholar 

  • Carroll TC (1972) Seed transmissibility of two strains of barley stripe mosaic virus. Virology 48:323–336

    Article  PubMed  CAS  Google Scholar 

  • Choe IS, Melcher U, Lebeurier G, Essenberg RC (1985) Recombination between mutant cauliflower mosaic virus DNAs. Plant Mol Biol 5:281–289

    Article  CAS  Google Scholar 

  • Dandekar AM, Gupta PK, Durzan DJ, Knauf V (1987) Transformation and foreign gene expression in micropropagated Douglas fir (Pseudotsuga menzieri). Bio/ Technology 5:587–590

    CAS  Google Scholar 

  • Davies JW, Stanley J (1989) Geminivirus genes and vectors. Trends Genet 5:77–81

    Article  PubMed  CAS  Google Scholar 

  • Davies JW, Townsend R, Stanley J (1987) The structure, expression, functions and possible exploitation of geminivirus genomes. In: Hohn T, Schell J (eds) Plant DNA infectious agents. Springer-Verlag, Vienna, p 31.

    Google Scholar 

  • Dawson WDO, Bubrick P, Grantham GL (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology. Phytopathology 78:783–789

    Article  CAS  Google Scholar 

  • Dixon L, Nyffenegger T, Delley G, Martinez-Izquierdo J, Hohn T (1986) Evidence for replicative recombination in cauliflower mosaic virus. Virology 150:463–468

    Article  PubMed  CAS  Google Scholar 

  • Ecker JR, Davies RW (1986) Inhibition of gene expression in plant cells by expression of antisense RNA. Proc Natl Acad Sci USA 83:5372–5376

    Article  PubMed  CAS  Google Scholar 

  • Ellis JG, Llewellyn DJ, Dennis ES, Peacock WJ (1987) Maize Adh-1 promoter sequences control anaerobic regulation: addition of upstream promoter elements from constitutive genes is necessary for expression in tobacco. EMBO J. 6:11–16.

    PubMed  CAS  Google Scholar 

  • Etessami P, Watts J, Stanley J (1988) Size reversion of African cassava mosaic virus coat protein gene deletion mutants during infection of Nicotiana benthamiana. J Gen Virol 70:277–289

    Article  Google Scholar 

  • Falk BW, Duffus JE, Morris TJ (1979) Transmission, host range and serological properties of the viruses that cause lettuce speckles disease. Phytopathology 69:612–617

    Article  Google Scholar 

  • Fang R-X, Nagy F, Sivasubramaniam S, Chua N-H (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. The Plant Cell 1:141–150

    Article  PubMed  CAS  Google Scholar 

  • Fenoll C, Black DM, Howell SH (1988) The intergenic region of maize streak virus contains promoter elements involved in rightward transcription of the viral genome. EMBO J. 7:1589–1596

    PubMed  CAS  Google Scholar 

  • French R, Janda M, Ahlquist P (1986) Bacterial gene inserted in an engineered RNA virus: Efficient expression in monocotyledonous plant cells. Science 231:1294–1297.

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987a) The 5’-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res 15:3257–3273

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987b) A comparison of eukaryotic viral 5’-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res 15:8693–8711

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987c) In vivo uncoating and efficient expression of foreign mRNAs packaged in TMV-like particles. Science 236:1122–1124

    Article  PubMed  CAS  Google Scholar 

  • Gardiner W, Sunter G, Brand L, Elmer JS, Rogers SG, Bisaro DM (1988) Genetic analysis of tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO J. 7:899–904

    PubMed  CAS  Google Scholar 

  • Gardner RC (1983) Plant viral vectors: CaMV as an experimental tool. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering in plants. Plenum, New York, p 21

    Google Scholar 

  • Geldereich A, Lebeurier G, Hirth L (1986) In vivo dimerization of cauliflower mosaic virus DNA can explain recombination. Gene 48:277–286

    Article  Google Scholar 

  • Grimsley N, Hohn T, Hohn B (1986a) Recombination in a plant virus: template-switching in cauliflower mosaic virus. EMBO J 5:641–646

    PubMed  CAS  Google Scholar 

  • Grimsley N, Hohn B, Hohn T, Walden R (1986b) Agroinfection an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83:3282–3286

    Article  PubMed  CAS  Google Scholar 

  • Grimsley N, Hohn T, Davies JW, Hohn B (1987) Agrobacterium-medmted delivery of infectious maize streak virus into maize plants. Nature 325:177–179

    Article  CAS  Google Scholar 

  • Gronenborn B (1984) Cauliflower mosaic virus a possible vector for genetic engineering in plants. Hoppe-Seyler’s Z Physiol Chem 365:217–218

    Google Scholar 

  • Gronenborn B (1987) The molecular biology of cauliflower mosaic virus and its application as plant gene vector. In: Hohn T, Schell J (eds) Plant DNA infectious agents. Springer-Verlag, Vienna, p 1

    Chapter  Google Scholar 

  • Haber S, Hamilton RI (1980) Distribution of determinants for symptom production, nucleoprotein component distribution and antigenicity of coat protein between the two RNA components of cherry leaf roll virus. J Gen Virol 50:377–389

    Article  CAS  Google Scholar 

  • Hanada K, Harrison BD (1977) Effects of virus genotype and temperature on seed transmission of nepoviruses. Ann Appl Biol 85:79–92

    Article  Google Scholar 

  • Hanley-Bowdoin L, Elmer JS, Rogers SF (1988) Transient expression of heterologous RNAs using tomato golden mosaic virus. Nucleic Acids Res 16:10511–10528

    Article  PubMed  CAS  Google Scholar 

  • Harrison BD, Murant AF (1984) Involvement of virus-coded proteins in transmission of plant viruses by vectors. In: Mayo MA, Harrap KA (eds) Vectors in virus biology. Academic Press, London, p 1

    Google Scholar 

  • Harrison BD, Murant AF, Mayo MA, Roberts IM (1974) Distribution of determinants for symptom production, host range and nematode transmissibility between the two RNA components of raspberry ringspot virus. J Gen Virol 22:233–247

    Article  Google Scholar 

  • Hayes RJ, Coutts RHA, Buck KW (1988a) Agroinfection of Nicotiana spp with cloned DNA of tomato golden mosaic virus. J Gen Virol 69:1487–1496

    Article  CAS  Google Scholar 

  • Hayes RJ, Petty IDT, Coutts RHA, Buck KW (1988b) Gene amplification and expression in plants by a replicating geminivirus vector. Nature 334:179–182

    Article  CAS  Google Scholar 

  • Hayes RJ, Coutts RHA, Buck KW (1989) Stability and expression of bacterial genes in replicating geminivirus vectors in plants. Nucleic Acids Res 17:2391–2403

    Article  PubMed  CAS  Google Scholar 

  • Hohn B, Hohn T (1982) Cauliflower mosaic virus: a potential vector for plant genetic engineering. In: Kahl G, Schell JS (eds) Molecular biology of plant tumors. Academic Press, New York, p 549

    Google Scholar 

  • Hohn T, Richards KE, Lebeurier G (1982) CaMV on its way to becoming a useful plant vector. Curr Top Microbiol Immunol 96:193–236

    Article  CAS  Google Scholar 

  • Hohn B, Hohn T, Boulton MI, Davies JW, Grimsley N (1987) Agroinfection of Zea mays with maize streak virus DNA. In: von Wettstein D, Chua N-H (eds), Plant molecular biology. Plenum, New York, p 459

    Google Scholar 

  • Holmes FO (1956) A simultaneous-infection test for viral inter-relationships as applied to aspermy and other viruses. Virology 2:611–617

    Article  PubMed  CAS  Google Scholar 

  • Howell SH (1982) Plant molecular vehicles: potential vectors for introducing foreign genes into plants. Annu Rev Plant Physiol 33:609–650

    Article  CAS  Google Scholar 

  • Howell SH, Walden RM, Marco Y (1983) Recombination and replication of cauliflower mosaic virus DNA In: Goldberg RB (ed) Plant molecular biology. UCLA Symposium on molecular and cellular biology Vol. 12. Alan R Liss Inc, p 137

    Google Scholar 

  • Hull R (1970) Studies on alfalfa mosaic virus. III. Reversible dissociation and reconstitution studies. Virology 40:34–47

    Article  PubMed  CAS  Google Scholar 

  • Hull R (1978) The possible use of plant virus DNAs in genetic manipulation in plants. Trends Biochem Sci 3:254–256

    Article  CAS  Google Scholar 

  • Hull R (1980) Genetic engineering in plants: the possible use of cauliflower mosaic virus DNA as a vector. In: Sala F, Parisi B, Cella R, Ciferri O (eds) Plant cell cultures: Results and perspectives. Elsevier, Amsterdam, p 219

    Google Scholar 

  • Hull R (1981) Cauliflower mosaic virus DNA as a possible gene vector for higher plants. In: Panopoulos NJ (ed) Genetic engineering in plant sciences. Praeger Scientific, New York, p 99

    Google Scholar 

  • Hull R (1983) The current status of plant viruses as potential DNA/RNA vector systems. In: Mantell SH, Smith H (eds) Plant biotechnology. Society for Experimental Biology Seminar Series Vol. 18. Cambridge University Press, Cambridge, p 299

    Google Scholar 

  • Hull R (1985) Viruses as vectors for plant genes. In: Dodds JH (ed) Plant genetic engineering. Cambridge University Press, Cambridge, p 95

    Google Scholar 

  • Hull R (1989) Non-conventional resistance to viruses in plants - concepts and risks. Proc 19th Stadler Conference (in press)

    Google Scholar 

  • Hull R, Covey SN (1986) Genome organization and expression of reverse transcribing elements: variations and a theme. J Gen Virol 67:1751–1758

    Article  PubMed  CAS  Google Scholar 

  • Hull R, Davies JW (1983) Genetic engineering with plant viruses and their potential as vectors. Adv Virus Res 28:1–31

    Article  PubMed  CAS  Google Scholar 

  • Joblin SA, Gehrke L (1987) Enhanced translation of chimeric messenger RNAs containing a plant viral leader sequence. Nature 325:622–625

    Article  Google Scholar 

  • Joblin SA, Cuthbert CM, Rogers SG, Fraley RT, Gehrke L (1988) In vitro transcription and translational efficiency of chimeric SP6 messenger RNAs devoid of 5’-veetor nucleotides. Nucleic Acids Res 16:4483–4498

    Article  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  PubMed  CAS  Google Scholar 

  • King AMQ (1988) Genetic recombination in positive strand RNA viruses. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics Vol. 2. CRC Press, Boca Raton, p 149

    Google Scholar 

  • Lazarowitz SG, Pinder AK, Damsteegt VD, Rogers SG (1989) Maize streak virus genes essential for systemic spread and symptom development. EMBO J. 8:1023–1032

    PubMed  CAS  Google Scholar 

  • Lebeurier G, Hirth L, Hohn B, Hohn T (1982) In vivo recombination of cauliflower mosaic virus DNA. Proc Natl Acad Sci USA 79:2932–2936

    Article  PubMed  CAS  Google Scholar 

  • Leider JM, Palese P, Smith FI (1988) Determination of the mutation rate of a retrovirus. J Virol 62:3084–3091

    PubMed  CAS  Google Scholar 

  • Michael AJ (1988) Transcriptional promoters of cauliflower mosaic virus. PhD Thesis, University of East Anglia, UK

    Google Scholar 

  • Morelli G, Nagy F, Fraley RT, Rogers SG, Chua N-H (1985) A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. Nature 315:200–204

    Article  CAS  Google Scholar 

  • Nagy F, Boutry M, Hsu M-Y, Wong M, Chua N-H (1987) The 5’- proximal region of the wheat Cab-1 gene contains a 268-bp enhancer-like sequence for phytochrome response. EMBO J 6:2537–2542

    PubMed  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Identification of the DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  • Ow DW, Jacobs JD, Howell SH (1987) Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by the firefly luciferase gene as a reporter of promoter activity. Proc Natl Acad Sci USA 84:4870–4874

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722

    PubMed  CAS  Google Scholar 

  • Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targetting in plants. EMBO J 13:4021–4026

    Google Scholar 

  • Potrykus I, Saul M, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199:183–188

    Article  CAS  Google Scholar 

  • Reanney D (1984) Genetic noise in evolution. Nature 307:318–319

    Article  PubMed  CAS  Google Scholar 

  • Robinson DJ, Hamilton WDO, Harrison BD, Baulcombe DC (1987) Two anomolous tobamovirus isolates: evidence for RNA recombination in nature. J Gen Virol 68:2551–2561

    Article  CAS  Google Scholar 

  • Rochon D, Siegel A (1984) Chloroplast DNA transcripts are encapsidated by tobacco mosaic virus coat protein. Proc Natl Acad Sci USA 81:1719–1723

    Article  PubMed  CAS  Google Scholar 

  • Rochow WF (1970) Barley yellow dwarf virus: phenotypic mixing and vector specificity. Science 167:875–878

    Article  PubMed  CAS  Google Scholar 

  • Sanders PR, Winter JA, Barnason AR, Rogers SG, Fraley RT (1987) Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res 15:1543–1558

    Article  PubMed  CAS  Google Scholar 

  • Sandford JC and Johnston SA (1985) The concept of parasite-derived resistance -deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Shillito RD, Saul MW, Paszkowski J, Muller M, Potrykus I (1985) High efficiency direct gene transfer to plants. Bio/Technology 3:1099–1103

    Article  Google Scholar 

  • Sleat DE, Turner PC, Finch JT, Butler PJG, Wilson TMA (1986) Packaging of recombinant RNA molecules into pseudovirus particles directed by the origin-of-assembly sequence from tobacco mosaic virus RNA. Virology 155:299–308

    Article  PubMed  CAS  Google Scholar 

  • Sleat DE, Gallie DR, Jefferson RA, Bevan MW, Turner PC, Wilson TMA (1987) Characterisation of the 5’-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene 60:217–225

    Article  PubMed  CAS  Google Scholar 

  • Sleat DE, Hull R, Turner PC, Wilson TMA (1988) Studies on the mechanism of translational enhancement by the 5’-leader sequence of tobacco mosaic virus RNA. Eur J Biochem 175:75–86

    Article  PubMed  CAS  Google Scholar 

  • Stanley J, Townsend R (1986) Infectious mutants of cassava latent virus generated in vivo from intact recombinant DNA clones containing single copies of the genome. Nucleic Acids Res 14:5981–5988

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu N, Ishikawa M, Meshi T, Okada Y (1987) Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J 6:307–311

    PubMed  CAS  Google Scholar 

  • Topfer R, Gronenborn B, Schell J, Steinbiss H-H (1989) Uptake and transient expression of chimeric genes in seed-derived embryos. The Plant Cell 1:133–139

    Article  PubMed  CAS  Google Scholar 

  • van Vloten-Doting L (1983) Advantages of multipartite genomes of single-stranded RNA plant viruses in nature, for research and for genetic engineering. Plant Mol Biol Rep 1:55–60

    Article  Google Scholar 

  • Walden RM, Howell SH (1982) Intergenomic recombination events among pairs of defective cauliflower mosaic virus genomes. J Mol Appl Genet 1:447–456

    PubMed  CAS  Google Scholar 

  • Ward A, Etassami P, Stanley J (1988a) Expression of a bacterial gene in plants mediated by infectious geminivirus DNA. EMBO J 7:1583–1587

    PubMed  CAS  Google Scholar 

  • Ward CD, Stokes MAM, Flanegan JB (1988b) Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol 62:558–562

    PubMed  CAS  Google Scholar 

  • Waterhouse PM, Murant AF (1983) Further evidence on the nature of the dependence of carrot mottle virus on carrot red leaf virus for transmission by aphids. Ann Appl Biol 103:455–464

    Article  Google Scholar 

  • Wilson TMA (1989) Plant viruses: a tool-box for genetic engineering and crop protection. BioEssays 10:179–186

    Article  PubMed  CAS  Google Scholar 

  • Woolston CJ, Barker R, Gunn H, Boulton MI, Mullineaux PM (1988) Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. Plant Mol Biol 11:35–43

    Article  CAS  Google Scholar 

  • Zimmern D (1988) Evolution of RNA viruses. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics Vol. 2. CRC Press, Boca Raton, p 211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hull, R. (1990). The Use and Misuse of Viruses in Cloning and Expression in Plants. In: Fraser, R.S.S. (eds) Recognition and Response in Plant-Virus Interactions. NATO ASI Series, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74164-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74164-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74166-1

  • Online ISBN: 978-3-642-74164-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics