Skip to main content

Sorting Signals and Trafficking of Lysosomal and Extracellular Hydrolases of Cell Separation

  • Chapter
Cell Separation in Plants

Part of the book series: NATO ASI Series ((ASIH,volume 35))

Abstract

The induction, synthesis and delivery of cell wall hydrolases to specific tissue regions where separation will occur are processes central to cell separation. All are amenable to detailed dissection using modern molecular techniques. Perhaps the next plateau, where molecular probes will be used to completely elucidate the topological and functional interaction of both large and small molecules at the limits of fine structural resolution, will bring even greater levels of understanding to the problem. In this account, the current status of knowledge concerning trafficking of intracellular hydrolases in plants and animal cells will be summarized together with available, albeit limited, evidence for sorting signals. Emphasis will be on hydrolases and secretion pathways followed by hydrolases either during movement to lysosomes in animals or to cell walls in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature Cited

  • Beckers CJM, Keller DS, Balch WE (1987) Semi-intact cells permeable to macromolecules: Use in Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell 50:523–534

    Article  PubMed  CAS  Google Scholar 

  • Bennett AB, Christofferson RE (1986) Synthesis and processing of cellulase from ripening avocado fruit. Plant Physiol 81:830–835

    Article  PubMed  CAS  Google Scholar 

  • Brady CJ, MacAlpine G, McGlasson WB, Ueda Y (1982) Polygalacturonase in tomato fruits and the induction of ripening. Aus J Plant Physiol 9:171–178

    Article  CAS  Google Scholar 

  • Brown MS, Anderson RGW, Goldstein JL (1983) Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell 32:663–667

    Article  PubMed  CAS  Google Scholar 

  • Brown WJ, Goodhouse J, Farquhar M (1986) Mannose 6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes. J Cell Biol 103:1235–1247

    Article  PubMed  CAS  Google Scholar 

  • Creek KE, Sly WS (1984) The role of the phosphomannosyl receptor in the transport of acid hydrolases to lysosomes. In: Dingle JT, Dean RT, Sly W (eds) Lysosomes in biology and pathology. Elsevier/North-Holland, New York, pp 62–82

    Google Scholar 

  • Dallman TF, Thomson WF, Eaks IL, Nothnagel EA (1989) Expression and transport of cellulase in avocado mesocarp during ripening. Protoplasma (in press)

    Google Scholar 

  • Davey J, Hurtley SM, Warren G (1985) Reconstitution of an endocytic fusion event in a cell-free system. Cell 43:643–652

    Article  PubMed  CAS  Google Scholar 

  • DellaPenna D, Alexander DG, Bennett AB (1986) Molecular cloning of tomato fruit polygalacturonase: analysis of polygalacturonase mRNA levels during ripening. Proc Natl Acad Sci USA 86:6420–6424

    Article  Google Scholar 

  • DellaPenna D, Bennett AB (1988) In vitro synthesis and processing of tomato fruit polygalacturonase. Plant Physiol 86:1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Deutscher SL, Creek KE, Merion M, Hirschberg CB (1983) Subfractionation of rat liver Golgi apparatus: Separation of enzyme activities involved in the biosynthesis of the phosphomannosyl recognition marker in lysosomal enzymes. Proc Natl Acad Sci USA 80:3938–3942

    Article  PubMed  CAS  Google Scholar 

  • Dunphy WG, Rothman JE (1985) Compartmental organization of the Golgi stack. Cell 42:13–21

    Article  PubMed  CAS  Google Scholar 

  • Eppler CM, Morré DJ (1982) Flow kinetics of a nucleoside phosphatase common to endoplasmic reticulum, Golgi apparatus and plasma membrane of rat liver. Eur J Cell Biol 29:13–23

    PubMed  CAS  Google Scholar 

  • Farquhar MG (1978) Recovery of surface membrane in anterior pituitary cells. Variations in traffic detected with anionic and cationic ferritin. J Cell Biol 77:R35–R42

    Article  PubMed  CAS  Google Scholar 

  • Farquhar MG (1981) Membrane recycling in secretory cells: Implications for traffic of products and specialized membranes within the Golgi complex. Methods Cell Biol 23:399–427

    Article  PubMed  CAS  Google Scholar 

  • Fischer, HD, Gonzalez-Noriega S, Sly WS, Morré DJ (1980) Phosphomannosyl-enzyme receptors in rat liver. Subcellular distribution and role in intracellular transport of lysosomal enzymes. J Biol Chem 255:9608–9615

    PubMed  CAS  Google Scholar 

  • Gabel CA, Goldberg DE, Kornfeld S (1982) Lysosomal enzyme oligosaccharide phosphorylation in mouse lymphoma cells: Specificity and kinetics of binding to the mannose 6-phosphate receptor in vivo. J Cell Biol 95:536–542

    Article  PubMed  CAS  Google Scholar 

  • Geisow M (1982) Lysosome proton pump identified. Nature 298:515–516

    Article  PubMed  CAS  Google Scholar 

  • Geuze HJ, Slot JW, Strous GJAM, Hasilik A, von Figura K (1984) Ultrastructural localization of the mannose 6-phosphate receptor in rat liver. J Cell Biol 98:2047–2054

    Article  PubMed  CAS  Google Scholar 

  • Geuze HJ, Slot JW, Strous GJAM, Hasilik A, von Figura K (1985) Possible pathways for lysosomal enzyme delivery. J Cell Biol 101:2253–2262

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DE, Kornfeld S (1983) Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J Biol Chem 258:3159–3165

    PubMed  CAS  Google Scholar 

  • Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234:438–443

    Article  PubMed  CAS  Google Scholar 

  • Hasilik A, Waheed A, von Figura K (1981) Enzymatic phosphorylation of lysosomal enzymes in the presence of UDP-N acetylglucosamine. Absence of the activity in I-cell fibroblasts. Biochem Biophys Res Commun 98:761–767

    Article  PubMed  CAS  Google Scholar 

  • Hoflack B, Fujimoto K, Kornfeld S (1987) The interaction of phosphorylated oligosaccharides and lysosomal enzymes with bovine liver cation-dependent mannose 6-phosphate receptor. J Biol Chem 262:123–129

    PubMed  CAS  Google Scholar 

  • Johnson LM, Bankaitis VA, Emr SD (1987) Distinct sequence determinants direct intracellular sorting and modification of yeast vacuolar protease. Cell 48:875–885

    Article  PubMed  CAS  Google Scholar 

  • Juniper BE (1977) Some speculations on the possible roles of the plasmodesmata in the control of differentiation. J Theor Biol 66:583–592

    Article  PubMed  CAS  Google Scholar 

  • Lang L, Reitman M, Tang J, Roberts RM, Kornfeld S (1984) Lysosomal enzyme phosphorylation. Recognition of a protein-dependent determinant allows specific phosphorylation of oligosaccharides present on lysosomal enzymes. J Biol Chem 259:14663–14671

    PubMed  CAS  Google Scholar 

  • Minnifield N, Creek KE, Navas P, Morré DJ (1986) Involvement of cis and trans Golgi apparatus elements in the intracellular sorting and targeting of acid hydrolases to lysosomes. Eur J Cell Biol 42:92–100

    PubMed  CAS  Google Scholar 

  • Minnifield N, Safranski K, Morré DJ (1988) Phosphomannosyl receptor binding is localized in vesicles separated by free-flow electrophoresis from rough endoplasmic reticulum preparations of rat liver. In: Morré DJ, Howell KE, Cook GMW, Evans WH (eds) Cell-free analysis of membrane traffic, Alan R. Liss, New York, pp 417–419

    Google Scholar 

  • Mollenhauer HH (1971) Fragmentation of mature dictyosome cisternae. J Cell Biol 49: 212–214

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ (1968) Cell wall dissolution and enzyme secretion during leaf abcission. Plant Physiol 43:1545–1559

    PubMed  Google Scholar 

  • Morré DJ, Creek KE, Matyas GR, Minnifield N, Sun I, Baudoin P, Morré DM, Crane FL (1984) Free-flow electrophoresis for subfractionation of rat liver Golgi apparatus. Bio Techniques 2:224–233

    Google Scholar 

  • Morré DJ, Morré DM, Heidrich HG (1983) Subfractionation of rat liver Golgi apparatus by free-flow electrophoresis. Eur J Cell Biol 31:263–274

    PubMed  Google Scholar 

  • Munro S, Pelham HRB (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    Article  PubMed  CAS  Google Scholar 

  • Musseil HW, Morré DJ (1969) A quantitative bioassay specific for polygalacturonases. Anal Biochem 28:353–360

    Article  Google Scholar 

  • Navas P, Minnifield N, Sun I, Morré DJ (1986) NADP phosphatase: A marker in free-flow electrophoretic separations for cisternae of the Golgi apparatus midregion. Biochim Biophys Acta 881:1–9

    PubMed  CAS  Google Scholar 

  • Nessler CL, Allen RD (1987) Pectinase In: Vaughn KC (ed) CRC handbook of plant cytochemistry. CRC Press, Baca Raton, FL Vol 1 pp 149–157

    Google Scholar 

  • Neufeld EF, Sando GN, Garvin AJ, Rome LH (1977) The transport of lysosomal enzymes. J Supramol Struct 6:95–101

    Article  PubMed  CAS  Google Scholar 

  • Novikoff AB (1976) The endoplasmic reticulumN a cytochemist’s view (a review). Proc Natl Acad Sci USA 73:2781–2787

    Article  PubMed  CAS  Google Scholar 

  • Nowack DD, Morré DM, Paulik M. Keenan TW, Morré DJ (1987) Intracellular membrane flow: Reconstitution of transition vesicle formation and function in a cell-free system. Proc Natl Acad Sci USA 84:6098–6102

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Glick BS, Rothman JE (1986) A new type of coated vesicular carrier that appears not to contain clathrin: Its possible role in protein transport within the Golgi stack. Cell 46:171–184

    Article  PubMed  CAS  Google Scholar 

  • Pääbo S, Bhat BM, Wold WSM, Peterson PA (1987) A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell 50:311–317

    Article  PubMed  Google Scholar 

  • Palade GE (1983) Membrane biogenesis: An overview. Meth Enzymol 69:xxiv–lv

    Google Scholar 

  • Paulik M, Nowack DD, Morré DJ (1988) Isolation of a vesicular intermediate in the cell-free transfer of membrane from transitional elements of the endoplasmic reticulum to Golgi apparatus cisternae of rat liver. J Biol Chem 263:17738–17748

    PubMed  CAS  Google Scholar 

  • Pavelka M (1987) Functional morphology of the Golgi apparatus. In: Beck F, Hild W, Kriz W, Ortmann R, Pauly JE, Schiebler TH (eds) Advances in anatomy, embryology and cell biology. Springer-Verlag, Heidelberg 106:1–94

    Google Scholar 

  • Pesacreta TC, Lucas WJ (1984) The plasma membrane coat and a coated vesicle-associated reticulum of membranes: their structure and possible interrelationship in Chara coralling. J Cell Biol 98:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Platt-Aloia KA, Thomson WW (1980) Aspects of the three-dimensional organization of avocado mesocarp cells as revealed by scanning electron microscopy. Protoplasma 104:157–165

    Article  Google Scholar 

  • Platt-Aloia KA, Thomson WW (1981) Ultrastructure of the mesocarp of mature avocado fruit and changes associated with ripening. Ann Bot 48:451–465

    Google Scholar 

  • Pohlmann R, Waheed A, Hasilik A, von Figura K (1982) Synthesis of phosphorylated recognition marker in lysosomal enzymes is located in the cis part of Golgi apparatus. J Biol Chem 257:5323–5325

    PubMed  CAS  Google Scholar 

  • Pohlmann R, Nagel G, Schmidt B, Stein M, Lorkowski G, Krentler C, Cully J, Meyer HE, Grzechik KH, Mersmann G, Hasilik A, von Figura K (1987) Cloning of a cDNA encoding the human cation dependent mannose 6-phosphate-specific receptor. Proc Natl Acad Sci USA 84:5575–79

    Article  PubMed  CAS  Google Scholar 

  • Reitman ML, Kornfeld S (1981a) UDP-N-acetylglucosamine:glycoprotein N-acetylglycosamine-1-phosphotransferase. Proposed enzyme for the phosphorylation of the high mannose oligosaccharide units of lysosomal enzymes. J Biol Chem 256:4275–4281

    PubMed  CAS  Google Scholar 

  • Reitman ML, Kornfeld S (1981b) Lysosomal enzyme targeting. N-acetylglucosaminylphosphotransferase selectively phosphorylate native lysosomal enzymes. J Biol Chem 256:11977–11980

    PubMed  CAS  Google Scholar 

  • Rosenfeld MG, Kreibich G, Popov D, Kato K, Sabatini DD (1982) Biosynthesis of lysosomal hydrolases: their synthesis in bound polysomes and the role of co-and post-translational processing in determining their subcellular distribution. J Cell Biol 93:135–143

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Virta H (1987) Perforated MDCK cells support intracellular transport. EMBO J 6:2241–2247

    PubMed  CAS  Google Scholar 

  • Sly WS, Fischer HD (1982) The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes. J Cell Biochem 18:67–85

    Article  PubMed  CAS  Google Scholar 

  • Sly WS, Stahl P (1978) Receptor mediated uptake of lysosomal enzymes. In: Silverstein SC (ed) Transport of macromolecules in cellular systems. Life Sciences Research Report II Dahlem Konferenzen, Berlin, pp 229–244

    Google Scholar 

  • Smith CE (1980) Ultrastructural localization of nicotinamide adenine dinucleotide phosphatase (NADPase) activity to the intermediate saccules of the Golgi apparatus in rat incisor ameloblasts. J Histochem Cytochem 28:16–26

    Article  PubMed  CAS  Google Scholar 

  • Tong PY, Tollefsen SE, Kornfeld S (1988) The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II. J Biol Chem 6:2585–2588

    Google Scholar 

  • Varki A, Kornfeld S (1980) Identification of a rat liver a-N-acetylglucosaminyl phosphodiesterase capable of removing “blocking” a-N-acetylglucosamine residues from phosphorylated high mannose oligosaccharides of lysosomal enzymes. J Biol Chem 255:8398–8401

    PubMed  CAS  Google Scholar 

  • Varki A, Kornfeld S (1981) Purification and characterization of rat liver a-N-acetylglucosaminyl phosphodiesterase. J Biol Chem 256:9937–9943

    PubMed  CAS  Google Scholar 

  • Verner K, Schatz G (1988) Protein translocation across membranes. Science 241:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • von Figura K, Hasilik A (1986) Lysosomal enzymes and their receptors. Ann Rev Biochem 55:167–193

    Article  Google Scholar 

  • Waheed A, Hasilik AG, von Figura K (1981a) Processing of the phosphorylated recognition marker in lysosomal enzymes. Characterization and partial purification of a microsomal a-N-acetylglucosaminyl phosphodiesterase. J Biol Chem 256:5717–5721

    PubMed  CAS  Google Scholar 

  • Waheed A, Pohlman R, von Figura K (1981b) Subcellular location of two enzymes involved in the synthesis of phosphorylated recognition markers in lysosomal enzymes. J Biol Chem 256:4150–4152

    PubMed  CAS  Google Scholar 

  • Waheed A, Hasilik A, von Figura K (1982) UDP-N-acetylglucosamine: lysosomal enzyme precursor N-acetylglucosamine-1-phosphotransferase. Partial purification and characterization of the rat liver Golgi enzyme. J Biol Chem 257:12322–12331

    PubMed  CAS  Google Scholar 

  • Walter P, Gilmore R, Blobel G (1984) Protein translocation across the endoplasmic reticulum. Cell 38:5–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morré, D.J. (1989). Sorting Signals and Trafficking of Lysosomal and Extracellular Hydrolases of Cell Separation. In: Osborne, D.J., Jackson, M.B. (eds) Cell Separation in Plants. NATO ASI Series, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74161-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74161-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74163-0

  • Online ISBN: 978-3-642-74161-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics