Advertisement

Role of Lectin in the Pea-Rhizobium Symbiosis

  • Jan W. Kijne
  • Clara L. Diaz
  • Ben J. J. Lugtenberg
Conference paper
Part of the NATO ASI Series book series (ASIH, volume 36)

Abstract

Pea lectin (Pisum sativum lectin, Psl) is a 49 kDa protein with two high affinity binding sites for oligosaccharides containing a trimannoside core with a neighbouring fucosyl-α- 1,6-N-acetylglucosamine group (Kornfeld et al 1981, Debray et al 1981). Psl is a tetramer and can dissociate into two a subunits and two β subunits with molecular weights of 5800 Da and 17 000 yDa, respectively (Trowbridge 1974). Amino acid residues in one αβ-subunit pair contribute to the structure of one sugar-binding site (Van Driessche 1988). Psl is encoded by a family of four genes of which only one gene appears to be functional (Kaminski et al 1987). The sequence of the functional psl gene (LecA, Gatehouse et al 1987; Psll, Kaminski et al 1987) corresponds with the nucleotide sequence of cloned DNA complementary to Psl mRNA (Higgins et al 1983a). Furthermore, the deduced amino acid sequences correspond with previously reported amino acid sequences of parts of Psl (Van Driessche et al 1976, Foriers et al 1977, Richardson et al 1978). Psl is synthesized as a single translation product and post- translational cleavage of the Psl precursor yields one α and one β subunit (Higgins et al 1983a, 1983b, Lauwereys et al 1983, Van Driessche et al 1988).

Keywords

Root Hair White Clover Rhizobium Leguminosarum Infection Thread Infection Thread Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhuizen R (1988) The plant cytoskeleton in the Rhizobium- legume symbiosis. PhD Thesis, Leiden University, The NetherlandsGoogle Scholar
  2. Buffard D, Kaminski PA, Strosberg AD (1988) Lectin-gene expression in pea (Pisum sativum L.) roots. Planta 173: 367–372PubMedCrossRefGoogle Scholar
  3. Debellé F, Sharma SB, Rosenberg C, Vasse J, Maillet F, Truchet G, Dénarié J (1986) Respective roles of common and host-specific Rhizobium meliloti nod genes in the control of lucerne infection. In: Lugtenberg B (ed) Recognition in microbe-plant symbiotic and pathogenic interactions, pp. 17–28. Springer Verlag Berlin, HeidelbergCrossRefGoogle Scholar
  4. Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 117: 41–55PubMedCrossRefGoogle Scholar
  5. Díaz CL, Van Spronsen PC, Bakhuizen R, Logman GJJ, Lugtenberg EJJ, Kijne JW (1986) Correlation between infection by Rhizobium leguminosarum and lectin on the surface of Pisum sativum L. roots. Planta 168: 350–359PubMedCrossRefGoogle Scholar
  6. Díaz CL (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. PhD Thesis, Leiden University, The NetherlandsGoogle Scholar
  7. Díaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg BJJ, Kijne JW (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature (London) 338: 579–581CrossRefGoogle Scholar
  8. Entlicher G, Kocourek J (1975) Studies on phytohemagglutinins. XXIV. Isoelectric point and hybridization of the pea (Pisum sativum L.) isophytohemagglutinins. Biochim Biophys Acta 393: 165–169PubMedCrossRefGoogle Scholar
  9. Faucher C, Maillet F, Vasse J, Rosenberg C, Van Brussel AAN, Truchet G, Dénarié J (1988) Rhizobium meliloti host range nodH gene determines production of an alfalfa-specific extracellular signal. J Bacteriol 170: 5489–5499PubMedCentralPubMedGoogle Scholar
  10. Foriers A, Wuilmart C, Sharon N, Strosberg AD (1977) Extensive sequence homologies among lectins from leguminous plants. Biochem Biophys Res Comm 75: 980–986PubMedCrossRefGoogle Scholar
  11. Gatehouse JA, Bown D, Evans IM, Gatehouse LN, Jobes D, Preston P, Croy RRD (1987) Sequence of the seed lectin gene from pea (Pisum sativum L.). Nucl Acid Res 15: 7642CrossRefGoogle Scholar
  12. Halverson LJ, Stacey G (1985) Host recognition in the Rhizobium- soybean symbiosis. Evidence for the involvement of lectin in nodulation. Plant Physiol 77: 621–625PubMedCentralPubMedCrossRefGoogle Scholar
  13. Halverson LJ, Stacey G (1986) Effect of lectin on nodulation by wild-type Bradyrhizobium japonicum and a nodulation-defective mutant. Appl Environ Microbiol 51: 753–760PubMedCentralPubMedGoogle Scholar
  14. Higgins TVJ, Chandler PM, Zurawski G, Button SC, Spencer D (1983a) The biosynthesis and primary structure of pea seed lectin. J Biol Chem 258: 9544–9549PubMedGoogle Scholar
  15. Higgins TVJ, Chrispeels MJ, Chandler P, Spencer D (1983b) Intracellular site of synthesis and processing of lectin in developing pea cotyledons. J Biol Chem 258: 9550–9552PubMedGoogle Scholar
  16. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature (London) 303: 179–180CrossRefGoogle Scholar
  17. Kamberger W (1979) Role of cell surface polysaccharides in the Rhizobium-pea symbiosis. FEMS Microbiol Lett 6: 361–365CrossRefGoogle Scholar
  18. Kaminski PA, Buffard D, Strosberg AD (1987) The pea lectin gene family contains only one functional lectin gene. Plant Mol Biol 9: 497–507PubMedCrossRefGoogle Scholar
  19. Kornfeld K, Reitman ML, Kornfeld R (1981) The carbohydrate- binding specificity of pea and lentil lectins. Fucose is an important determinant. J Biol Chem 256: 6633–6640PubMedGoogle Scholar
  20. Kijne JW, Smit G, Diaz CL, Lugtenberg BJJ (1988) Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips. J Bacteriol 170: 2994–3000PubMedCentralPubMedGoogle Scholar
  21. Lauwereys M, Van Driessche E, Strosberg AD, Dejaegere R, Kanarek L (1983) The a and J3 subunits of pea lectin are the result of a post-translational cleavage of a precursor chain. In: Lectins, biology, biochemistry, clinical biochemistry, Vol. 3, pp. 603–610, Bog-Hansen TC, Spengler GA (eds), W de Gruyter, Berlin New York RichardsonGoogle Scholar
  22. Richardson C, Behnke WD, Preisheim JH, Blumenthal KM (1978) The complete amino acid sequence of the a subunit of pea lectin, Pisum sativum. Biochim Biophys Acta 537: 310–319PubMedCrossRefGoogle Scholar
  23. Smit G, Kijne JW, Lugtenberg BJJ (1987) Both cellulose fibrils and a Ca2+-dependent adhesin are involved in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 169: 4294–4301PubMedCentralPubMedGoogle Scholar
  24. Smit G, Kijne JW, Lugtenberg BJJ (1989a) Roles of flagella, lipopolysaccharide, and a Ca2+-dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to pea root hair tips. J Bacteriol 171: 569–572PubMedCentralPubMedGoogle Scholar
  25. Smit G, Logman TJJ, Boerrigter METI, Kijne JW, Lugtenberg BJJ (1989b) Purification and partial characterization of the Rhizobiunt lequminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J Bacteriol 171: 4054–4062PubMedCentralPubMedGoogle Scholar
  26. Spaink HP, Wijffelman CA, Pees E, Okker RJH, Lugtenberg BJJ (1987) Rhizobium nodulation gene nodD as a determinant of host specificity. Nature (London) 328: 337–340CrossRefGoogle Scholar
  27. Trowbridge IS (1974) Isolation and chemical characterization of a mitogeneic lectin from Pisum sativum. J Biol Chem 249: 6004–6012PubMedGoogle Scholar
  28. Van der Schaal CAM (1983) Lectins and their possible involvement in the Rhizobium-lequminosae symbiosis. PhD Thesis, Leiden University, The NetherlandsGoogle Scholar
  29. Van Driessche E, Foriers A, Strosberg AD, Kanarek L (1976) N- terminal sequences of the a and β subunits of the lectin from the garden pea (Pisum sativum L.). FEBS Lett 71: 220–222PubMedCrossRefGoogle Scholar
  30. Van Driessche E (1988) Structure and function of leguminous lectins. In: Advances in lectin research, Vol. 1, pp. 73–134, Franz H. ed, Springer Verlag Berlin Heidelberg New YorkCrossRefGoogle Scholar
  31. Van Driessche E, Beeckmans S, Dejaegere R, Kanarek L (1988) Isolation of the pea lectin precursor and characterization of its processing products. In: Lectins, biology, biochemistry, clinical biochemistry, Vol. 6, pp. 355–362, Reed DLJ, Bøg- Hansen TC (eds), Sigma Chem Co St. Louis Missouri USAGoogle Scholar
  32. Yao PY, Vincent JM (1969) Host specificity in the root hair curling factor of Rhizobium spp. Aust J Biol Sci 22: 413–423Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Jan W. Kijne
    • 1
  • Clara L. Diaz
    • 1
  • Ben J. J. Lugtenberg
    • 1
  1. 1.Department of Plant Molecular BiologyBotanical LaboratoryLeidenThe Netherlands

Personalised recommendations