Myotube Specific Expression of the Mouse AChR Delta Subunit Gene is Conferred by 148 BP of 5′ Flanking DNA

  • T. J. Baldwin
  • S. J. Burden
Conference paper
Part of the NATO ASI Series book series (volume 32)


The skeletal muscle AChR is a ligand-gated channel composed of four structurally related subunits. The four subunits assemble into a heteropentamer (alpha2, beta, gamma and delta) which binds acetylcholine and thus initiates a permeability change in the myofiber membrane that ultimately couples release of neurotransmitter to myofiber contraction (Fambrough, 1979; Karlin, 1980; Anderson, 1987).


Acetylcholine Receptor Subunit Gene Transcription Initiation Site Delta Subunit SV40 Early Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.J. 1987. Molecular biology of the acetylcholine receptor: structure and regulation of biogenesis. In: The Vertebrate Neuromuscular Junction. M.M. Salpeter, ed. Alan R. Liss, Inc. N.Y., N.Y. 285–315.Google Scholar
  2. Baldwin, T.J., C.M. Yoshihara, K. Blackmer, C.R. Kintner and S.J. Burden. 1988. Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis. J. Cell Biol. 106: 469–478.PubMedCrossRefGoogle Scholar
  3. Berg, D.K., R.B. Kelly, P.B. Sargent, P. Williamson and Z.W. Hall. 1972. Binding of alpha-bungarotoxin to acetylcholine receptors in mammalian muscle. Proc. Natl. Acad. Sci. USA. 69: 147–151.PubMedCrossRefGoogle Scholar
  4. Bergsma, D.J., J.M. Grichnik, L.M. Gossett and R.J. Schwartz. 1986. Delimitation and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal alpha-actin gene. Mol. Cell. Biol. 6: 2462–2475.PubMedGoogle Scholar
  5. Billeter, R., W. Quitschke and B.M. Patterson. 1988. Approximately 1 kilobase of sequence 5’ to the two myosin light-chain lf/3f gene cap sites is sufficient for differentiation-dependent expression. Mol. Cell. Biol. 8: 1361–1365.PubMedGoogle Scholar
  6. Bullock, P., J. Miller and M. Botchan. 1986. Effects of poly [d(pGpT)-d(pApC)] and poly [d(pCpG)-d(pCpG)] repeats on homologous recombination in somatic cells. Mol. Cell. Biol. 6: 3948–3953.PubMedGoogle Scholar
  7. Burden, S.J. 1977. Development of the neuromuscular junction in the chick embryo: the number, distribution and stability of acetylcholine receptors. Dev. Biol. 57: 317–329.PubMedCrossRefGoogle Scholar
  8. Chirgwin, J.M., A.E. Przybyla, R.J. MacDonald and W.J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 18: 5294–5299.PubMedCrossRefGoogle Scholar
  9. Crowder, C.M. and J. P. Merlie. 1986. DNase I-hypersensitive sites surround the mouse acetylcholine receptor delta-subunit gene. Proc. Natl. Acad. Sci. USA. 83: 8405–8409.PubMedCrossRefGoogle Scholar
  10. Evans, S., Goldman, D., S. Heinemann and J. Patrick. 1987. Muscle acetylcholine receptor biosynthesis: regulation by transcript availability. J. Biol. Chem. 262: 4911–4916.PubMedGoogle Scholar
  11. Fambrough, D.M. 1979. Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59: 165–227.PubMedGoogle Scholar
  12. Frischauf, A.M., H. Lehrach, A. Poustka and N. Murray. 1983. Lambda replacement vectors carrying polylinker sequences. J. Mol. Biol. 170: 827–842.PubMedCrossRefGoogle Scholar
  13. Gorman, C.M., L.F. Moffat and B.H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.PubMedGoogle Scholar
  14. Grichnik, J.M., D.J. Bergsma and R.J. Schwartz. 1986. Tissue restricted and stage specific transcription is maintained within 411 nucleotides flanking the 5’ end of the chicken alpha-skeletal actin gene. Nucleic. Acids Res. 14: 1683–1701.PubMedCrossRefGoogle Scholar
  15. Hamada, N., M. Seidman, B. H. Howard and C.M. Gorman. 1984. Enhanced gene expression by the poly (dT-dG)-poly (dC-dA) sequence. Mol. Cell. Biol. 4: 2622–2630.PubMedGoogle Scholar
  16. Heidmann, O., A. Buonanno, B. Geoffroy, B. Robert, J.L. Guenet, J.P. Merlie and J.P. Changeux. 1986. Chromosomal localization of muscle nicotinic acetylcholine receptor genes in the mouse. Science. 234: 866–868.PubMedCrossRefGoogle Scholar
  17. Hu, M.C.T. S.B. Sharp and N. Davidson. 1986. The complete sequence of the mouse skeletal alpha-actin gene reveals several conserved inverted repeat sequences outside the protein coding region. Mol. Cell. Biol. 6: 15–25.PubMedGoogle Scholar
  18. Karlin, A. 1980. Molecular properties of nicotinic acetylcholine receptors. In: The Cell Surface and Neuronal Function. C. Cotman, G. Post, and G. Nicolson, eds. Elsevier/North Holland. 191–260.Google Scholar
  19. Klarsfeld, A. and J.P. Changeux. 1985. Activity regulates the levels of acetylcholine receptor alpha-subunit mRNA in cultured chicken myotubes. Proc. Natl. Acad. Sci. USA. 82: 4558–4562.PubMedCrossRefGoogle Scholar
  20. Klarsfeld, A., P. Daubas, B. Bourachot and J.P. Changeux. 1987. A 5’-flanking region of the chicken acetylcholine receptor alpha-subunit gene confers tissue specificity and developmental control of expression in transfected cells. Mol. Cell. Biol. 7: 951–955.PubMedGoogle Scholar
  21. Konieczny, S.F. and C.P. Emerson. 1987. Complex regulation of the muscle- specific contractile protein (troponin I) gene. Mol. Cell. Biol. 7: 3065–3075.PubMedGoogle Scholar
  22. Laimins, L.A., G. Khoury, C. Gorman, B. Howard and P. Gruss. 1982. Host- specific activation of gene expression of 72 base pair repeats of Simian virus 40 and Moloney murine leukemia virus. Proc. Natl. Acad. Sci. USA. 79: 6453–6457.PubMedCrossRefGoogle Scholar
  23. LaPolla, R.J., K. Mixter-Mayne and N. Davidson. 1984. Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor. Proc. Natl. Acad. Sci. USA. 81: 7970–7974.PubMedCrossRefGoogle Scholar
  24. Lomo, T. and R.H. Westgaard, 1975. Control of ACh senstivity in rat muscle fibers. Cold Spring Harbor Symp. Quant. Biol. 40: 263–274.Google Scholar
  25. Maniatis, T., E.F. Fritsch and J. Sambrook. 1982. Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  26. Melton, D.A., P.A. Krieg, M.R. Rebagliati, K. Zinn and M. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12: 7035–7056.PubMedCrossRefGoogle Scholar
  27. Merlie, J.P. K.E. Isenberg, S.D. Russell and J.R. Sanes. 1984. Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe. J. Cell Biol. 99: 332–335.PubMedCrossRefGoogle Scholar
  28. Miledi, R. and L.T. Potter. 1971. Acetylcholine receptors in muscle fibers. Nature. 233: 599–603.PubMedCrossRefGoogle Scholar
  29. Nef, P., A. Mauronf R. Stalder, C. Alliod and M. Ballivet. 1984. Structure, linkage, and sequence of the two genes encoding the delta and gamma subunits of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA. 81: 7975–7979.PubMedCrossRefGoogle Scholar
  30. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, T. Hirose, M. Asai, H. Takashima, S. Inayama, T. Miyata and S. Numa. 1983. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature, 302: 528–532.PubMedCrossRefGoogle Scholar
  31. Patterson, B. and J. Prives. 1973. Appearance of acetylcholine receptor in differentiating cultures of embryonic chick breast muscle. J. Cell Biol. 59: 241–245.CrossRefGoogle Scholar
  32. Salpeter, M.M. 1987. Development and neural control of the neuromuscular junction and of the junctional acetylcholine receptor. In: The Vertebrate Neuromuscular Junction. M.M. Salpeter, ed. Alan R. Liss, Inc., N.Y. 55–115.Google Scholar
  33. Sanger, F., S. Nicklen and A.R. Coulson. 1977. DNA sequencing with chain termination inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463–5467.PubMedCrossRefGoogle Scholar
  34. Selden, R.F., K.B. Howie, M.E. Rowe, H.M. Goodman and D.D. Moore. 1986. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6: 3173–3179.PubMedGoogle Scholar
  35. Shirakata, M., Y. I. Nabeshima, K. Konishi, and Y. Fujii-Kuriyama. 1988. Upstream regulatory region for inducible expression of the chicken skeletal myosin alkali light-chain gene. Mol. Cell. Biol. 8: 2581–2588.PubMedGoogle Scholar
  36. Southern, P.J. and P. Berg. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Gen. 1: 327–341.Google Scholar
  37. Treco, D. and N. Arnheim. 1986. The evolutionarily conserved repetitive sequence d(TG-AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Mol. Cell. Biol. 6: 3934–3947.PubMedGoogle Scholar
  38. Wigler, M., A. Pellicer, S. Silverstein, R. Axel, G. Urlaub and L. Chasin. 1979. DNA mediated transfer of the adenine phospho-ribosyltransferase locus into mammalian cells. Proc. Natl. Acad. Sci. USA. 76: 1373–1376.PubMedCrossRefGoogle Scholar
  39. Yu, L., R. J. LaPolla and N. Davidson. 1986. Mouse muscle nicotinic acetylcholine receptor gamma subunit: cDNA sequence and gene expression. Nucleic Acids Res. 14: 3539–3555.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • T. J. Baldwin
    • 1
  • S. J. Burden
    • 1
  1. 1.Biology Department, 16-820Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations