Advertisement

The Ultrastructural Basis of Capillary Permeability

  • Elizabeth M. Burns
  • Thomas W. Kruckeberg
Conference paper
Part of the NATO ASI Series book series (volume 33)

Abstract

The highest level of integrative brain function requires homeostasis and isolation of the internal milieu of the brain. Homeostasis and isolation are accomplished by a constellation of brain capillary wall morphological, biochemical, and physiological mechanisms that constitute the blood-brain barrier (BBB). The ultrastructural basis of the BBB consists of tight interendothelial junctions, the absence of endothelial pores, a paucity of pinocytotic vesicles, and an increased numerical density of endothelial mitochondria. The endothelial membrane is supported by pericytes, basal lamina, and astrocytic end-foot processes.

Key-Words

Blood-brain barrier tight interendothelial junctions endothelial pores pinocytotic vesicles endothelial mitochondria pericytes basal lamina glial end-foot processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adinolfi M (1985) The development of the human blood-CSF-brain barrier. Dev Med and Child Neurol 27: 532–537.CrossRefGoogle Scholar
  2. Bar T (1978) Morphometric evaluation of capillaries in different laminae of rat cerebral cortex by automatic image analysis: Changes during development and aging. In: J Cervos-Navarro, E Betz, G Ebhardt, R Ferszt, B Wullenweber (eds). Advances in Neurology, vol 20, Pathology of Cerebro¬spinal Microcirculation, Plenum Press, New York, pp 1–9.Google Scholar
  3. Bar T, Wolff J R (1973) Quantitative Beziehungen zwischen der Verzweig ungsdichte und Lange von Capillaren im Neocortex der Ratte wahrend der postnatalen Entwicklung. Z Anat EntwGesch 141: 207–228.CrossRefGoogle Scholar
  4. Bar T, Wolff J R (1976) Development and adult variations of the wall of brain capillaries in the neocortex of rat and cat. In: J Cervos-Navarro, E Betz, F Matakas, R Wullenweber (eds) The Cerebral Vessel Wall, Raven Press, New York, pp 1–6.Google Scholar
  5. Bradbury M B W (1984) The structure and function of the blood-brain barrier. Fed Proc 43: 186–190.PubMedGoogle Scholar
  6. Brightman M W & Reese T S (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677.PubMedCrossRefGoogle Scholar
  7. Bundgaard M (1982) Ultrastructure of frog cerebral and pial microvessels and their impermeability to lanthanum ions. Brain Res 241: 57–65.PubMedCrossRefGoogle Scholar
  8. Bundgaard M (1986) Pathways across the vertebrate blood-brain barrier: Morphological viewpoints. In H F Cserr (ed) The Neuronal Microenvironment. Annals of the New York Academy of Sciences. 481: 7–19.Google Scholar
  9. Burns E M, Kruckeberg T W, Comerford L E, Buschmann MB T (1979) Thinning of capillary walls and declining numbers of endothelial mitochondria in the cerebral cortex of the aging primate, Macaca nemestrina. J Geront 34: 642–650.PubMedGoogle Scholar
  10. Burns E M, Kruckeberg T W, Gaetano P K (1981) Changes with age in cerebral capillary morphology. Neurobiol of Aging, 2: 285–291.CrossRefGoogle Scholar
  11. Burns E M, Kruckeberg T W, Gaetano P K, Shulman L M (1983) Morphological changes in cerebral capillaries with age. In: J Cervos-Navarro, H I Sarkander (eds) Brain Aging: Neuropathology and Neuropharmacology, New York: Raven Press, pp 115–132.Google Scholar
  12. Caley D W, Maxwell D W (1970) Development of the blood vessels and extra-cellular spaces during postnatal maturation of rat cerebral cortex. J Comp Neurol 138: 31–48.PubMedCrossRefGoogle Scholar
  13. Craigie E H (1924) Changes in vascularity in the brain stem and cerebellum of the albino rat between birth and maturity. J Comp Neurol 38: 27–48.CrossRefGoogle Scholar
  14. Craigie E H (1925) Postnatal changes in vascularity in the cerebral cortex of the male albino rat. J Comp Neurol 39: 301–324.CrossRefGoogle Scholar
  15. Crone C, Christensen 0 (1981) Electrical resistance of a capillary endothelium. J Gen physiol 77: 1349–1371.Google Scholar
  16. Cserr H F, Bundgaard M (1986) The neuronal microenvironment: A comparative view. In H F Cserr (ed) The Neuronal Microenvironment. Annals of the New York Academy of Sciences. 481: 1–7.Google Scholar
  17. Davson H (1976) The blood-brain barrier. J Physiol 255: 1–28.PubMedGoogle Scholar
  18. Diamond J M, Wright E M (1969) Biological membranes: The physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol 31: 581–646.PubMedCrossRefGoogle Scholar
  19. Donahue S (1964) A relationship between fine structure and function of blood vessels in the central nervous system of rabbit fetuses. Am J Anat 115: 17–26.PubMedCrossRefGoogle Scholar
  20. Donahue S, Pappas G D (1961) The fine structure of capillaries in the cerebral cortex of the rat at various stages of development. Am J Anat 108: 331–347.PubMedCrossRefGoogle Scholar
  21. Dyson S E, Jones D G, Kendrick W L (1976) Some observations on the ultrastructures of developing rat cerebral capillaries. Cell Tissue Res 173: 529–542.PubMedCrossRefGoogle Scholar
  22. Hannah R S, Nathaniel E J H (1974) The postnatal development of blood vessels in the substantia gelatinosa of rat cervical cord - an ultrastructural study. Anat Rec 178: 691–710.PubMedCrossRefGoogle Scholar
  23. Hunziker O, Frey H, Schulz U (1974) Morphometric investigations of capillaries in the brain cortex of the cat. Brain Res 65: 1–11.PubMedCrossRefGoogle Scholar
  24. Hunziker O, Schweizer A (1977) Postmortem changes in stereological parameters of cerebral capillaries. Beitr Path 161: 244–255.CrossRefGoogle Scholar
  25. Hunziker O, Abdel’Al S, Frey H, Veteau M-J, Meier-Ruge W (1978) Quantitative studies in the cerebral cortex of aging humans. J Geront 24: 27–31.CrossRefGoogle Scholar
  26. Hunziker O, Abdel’Al S, Schulz U, Schweizer A (1978) The architecture of cerebral capillaries in aged human subjects with hypertension. In: J Cervos-Navarro, E Betz, R Wullenweber (eds). Advances in Neurology, Vol. 20: Cerebrospinal Microcirculation, Raven Press, New York pp. 471–478.Google Scholar
  27. Hunziker O, Abdel’Al S, Schulz U (1979) The aging human cerebral cortex: A stereological characterization of changes in the capillary net. J Geront 34: 345–350.PubMedGoogle Scholar
  28. Joo F (1968) Effect of inhibition of adenosine triphosphatase activity on the fine structural organization of the brain capillaries. Nature 219: 1378–1379.PubMedCrossRefGoogle Scholar
  29. Lambertson C J (1980) Chemical control of respiration at rest. In: V B Mountcastle (ed) Medical Physiology, C V Mosby, St. Louis, 1774–1827.Google Scholar
  30. Lee J C (1971) Evolution in the concept of the blood-brain barrier phenomenon. Progress in Neuropathol 1: 84–145.Google Scholar
  31. Mancardi G L, Perdelli F, Rivano C, Leonarde A, Bugiani O (1980) Thickening of the basement membrane of cortical capillaries in Alzheimer’s disease. Acta Neuropath 49: 79–85.PubMedCrossRefGoogle Scholar
  32. Meier-Ruge W, Hunziker O, Schulz U, Tobler H-J, Schweizer A 1980 ) Stereological changes in the capillary network and nerve cells of the aging human brain. Mechs Aging Dev 14: 233–243.CrossRefGoogle Scholar
  33. Milnor W R (1980) Capillaries and lymphatic vessels. In: V B Mountcastle (ed) Medical Physiology, C V Mosby, St. Louis, pp 1085–1093.Google Scholar
  34. Miquel J, Economos A C, Fleming J, Johnson J E, Jr. (1980) Mitochondrial role in cell aging. Expl Geront 15: 575–591.CrossRefGoogle Scholar
  35. Molgard K, Balslev Y, Lauritzen B, Norman R (1987) Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: a CSF-brain barrier. J Neurocytol 16: 433–444.CrossRefGoogle Scholar
  36. Mollgard K, Saunders N R (1986) The development of the human blood-brain and blood-CSF barriers. Neuropath Applied Neurobiol 12: 337358.Google Scholar
  37. Oldendorf W H, Cornford M E, Brown W J (1977) The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1: 409–417.PubMedCrossRefGoogle Scholar
  38. Palade G E, Bruns R R (1964) Structure and function in normal muscle capillaries. In: M D Sipperstein, A R Colwell, K Meyers (eds) Small blood vessel involvement in diabetes mellitus. Baltimore, Garamound/Pridemark. pp 45–55.Google Scholar
  39. Pappenheimer J R (1953) Passage of molecules through capillary walls. Physiol Rev 33: 387–423.PubMedGoogle Scholar
  40. Pardridge W M (1983) Brain metabolism: A perspective from the blood-brain barrier. Physiol Rev 63: 1481–1535.PubMedGoogle Scholar
  41. Rapoport S I (1976) Blood-Brain Barrier in Physiology and Medicine, Raven Press, New York.Google Scholar
  42. Reese T S, Karnovsky M J (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217.PubMedCrossRefGoogle Scholar
  43. Richards J G (1978) Permeability of intercellular junctions in brain epithelia and endothelia to exogenous amine: Cytochemical localization of extracellular 5-hydroxydopamine. J Neurocytol 7: 61–70.PubMedCrossRefGoogle Scholar
  44. Rowan R A, Maxwell S (1981a) Patterns of vascular sprouting in the postnatal development of the cerebral cortex of the rat. Am J Anat 160: 247–255.PubMedCrossRefGoogle Scholar
  45. Rowan R A, Maxwell S (1981b) An ultrastructural study of vascular proliferation and vascular alkaline phosphatase activity in the developing cerebral cortex of the rat. Am J Anat 160: 257–265.PubMedCrossRefGoogle Scholar
  46. Saunders N R, Mollgard K (1984) Development of the blood-brain barrier. J Dev Physiol 6: 45–57PubMedGoogle Scholar
  47. Schmidley J W, Wissig S L (1986) Basement membrane of central nervous system capillaries lacks ruthenium red-staining sites. Microvasc Res 32: 300–314.PubMedCrossRefGoogle Scholar
  48. Schulz U, Abdel’Al S, Hunziker O, Meier-Ruge W (1980) Quantitative morphological changes in capillaries and neurons in the aging human putamen. Microsc Acta 4: Suppl 4, 135–139.Google Scholar
  49. Schwink A, Wetzstein R (1966) Die Kapillaren in Subcommissural organ der Ratte. Z Zellforsch 73: 56–88.PubMedCrossRefGoogle Scholar
  50. Singh D N P, Nathaniel E J H (1975) Postnatal development of blood vessels (capillaries) in the rat olfactory bulb: A light and ultrastructural study. Neurosci Lett 1: 203–208.CrossRefGoogle Scholar
  51. Stewart P A, Hayakawa (1987) Interendothelial junctional changes underlie the developmental ‘tightening’ of the blood-brain barrier. Devel Brain Res 32: 271–281.Google Scholar
  52. Stewart P A, Magliocco M, Hayakawa K, Farrell C L, Del Maestro C F, Girvin J, Kaufmann J C E, Vinters H V, Gilbert J (1987) A quantitative analysis of blood-brain barrier ultrastructure in the aging human. Microvasc Res 33: 270–282.PubMedCrossRefGoogle Scholar
  53. Tilton R G, Hoffmann P L, Kilo C, Williamson J R (1981) Pericyte degenera-tion and basement membrane thickening in skeletal muscle capillaries of human diabetics. Diabetes 30: 326–334.PubMedGoogle Scholar
  54. Vracko R, Thorning, Huang T W (1979) Basal lamina of alveolar epithelium and capillaries: Quantitative changes with aging and in diabetes mellitus. Am Rev Resp Dis 120: 973–983.PubMedGoogle Scholar
  55. Vracko R, Pecoraro R E, Carter W B (1980) Overview article: Basal lamina of epidermis muscle fibers, muscle capillaries, and renal tubules: Changes with aging and in diabetes mellitus. Ultrastruct. Path. 1: 559–574.CrossRefGoogle Scholar
  56. Wolff J R, Bar T (1976) Development and adult variations of the pericapillary glial sheath in the cortex of rat. In: J Cervos-Navarro, E Betz, F Matakas, R WullenWeber (eds) The Cerebral Vessel Wall. Raven Press, New York, pp 7–13.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Elizabeth M. Burns
    • 1
  • Thomas W. Kruckeberg
    • 2
  1. 1.The Ohio State UniversityColumbusUSA
  2. 2.The University of IowaIowa CityUSA

Personalised recommendations