Efferent Projections to the Goldfish Retina

  • Alexander K. Ball
  • William K. Stell
  • Diane A. Tutton
Conference paper
Part of the NATO ASI Series book series (volume 31)

Abstract

The centrifugal innervation of the retina has been extensively described in birds (Cowan, 1970), but only recently has the existence of efferents been demonstrated in a variety of other species, including several species of fish (Witkovsky, 1971; Ebbesson and Meyer, 1981; Munz and Claas, 1981; Munz et al, 1982; Gerwerzhagen et al, 1982; Crapon de Caprona and Fritzsch, 1983; Meyer et al, 1983; Springer, 1983). Retrograde tracing methods have shown that there may be as many as five central sources of fish retinal efferents (Ebbesson and Meyer, 1981). Reports on the number and location of these efferent sources are inconsistent, but there is agreement that one source of retinal efferents is the terminal nerve (TN) (Springer, 1983).

Keywords

Formalin Dopamine Glycine Retina Stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arey LB (1916) The function of the afferent fibres of the optic nerve of fishes. J Comp Neurol 26: 213–245CrossRefGoogle Scholar
  2. Ball AK, Stell WK (1983) Structure of LHRH- and FMRFamide-Like imraunoreactive fibres in the goldfish retina. Supp Invest Ophthal Vis Sci 24: 66Google Scholar
  3. Ball AK, St.Denis J (1986) Displaced GABAergic amacrine cells in the ganglion cell layer of the goldfish retina. Supp Invest Ophthal Vis Sci 27: 332Google Scholar
  4. Ball AK, St.Denis J (1987) LHRH-imraunoreactive efferent fibres contact glycinergic and dopaminergic cells in the goldfish retina. Supp Invest Ophthal Vis Sci 28: 277Google Scholar
  5. Brookover C (1910) The olfactory nerve, the nervus terminalis and the preoptic sympathetic system in amia calva L., J Comp Neurol 20: 49–119CrossRefGoogle Scholar
  6. Cowan MW (1970) Centrifugal fibres to the avian retina. Br. Med. Bull. 26: 112–118Google Scholar
  7. Crapon de Crapona M-D, Fritzsch B (1983) The development of the retinopetal nucleus olfacto-retinalis of two cichlid fish as revealed by horseradish peroxidase. Dev Brain Res 11: 281–301Google Scholar
  8. Dearry A, Burnside B (1986) Dopaminergic regulation of cone retinomotor movement in isolated retinas: I. Induction of cone contraction is mediated by D2 receptors. J Neurochem 46: 1006–1021PubMedCrossRefGoogle Scholar
  9. Demski L, Northcutt RG (1983) The terminal nerve: A new chemosensory system in vertebrates? Science 220: 435–437PubMedCrossRefGoogle Scholar
  10. Demski L (1987) Phylogeny of luteinizing hormone-releasing hormone systems in protochordates and vertebrates. Ann NY Acad Sci 519: 1–11PubMedCrossRefGoogle Scholar
  11. Demski L, Schwänze1-Fukuda M (1987) Introduction: The Terminal Nerve; structure, function and evolution. Ann NY Acad Sci 519:ixGoogle Scholar
  12. Dowling JE (1986) A dopaminergic neuromodulatory system. TINS 9: 236–240Google Scholar
  13. Ebbesson S0E, Meyer DL (1981) Efferents to the retina have multiple sources in teleost fish. Science 214: 924–926CrossRefGoogle Scholar
  14. Eldred WD, Zucker C, Karten HJ, Yazulla S (1983) Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry. J Histochem Cytochem 31: 285–292.PubMedCrossRefGoogle Scholar
  15. Ellinwood WE, Ronnekleiv OK, Kelly MJ, Resko JA (1985) A new antiserum with conformational specificity for LHRH: Usefulness for radioimmunoassay and immunocytochemistry. Peptides 6: 45–52.PubMedCrossRefGoogle Scholar
  16. Fritsch G (1878) Untersuchungen über den feineren Bau des Fischgehirns mit besonderer Berücksichtigung der Homologien bei anderen Wirbelthierklassen. Verlag Gutmann’sche Buchhand. Berlin.Google Scholar
  17. Gerwerzhagen K, Rickmann MJ, Meyer DL, Ebbesson SOE (1982) Optic tract cells projecting to the retina in the teleost, Pantodon bucholzi. Cell Tiss Res 225: 23–28Google Scholar
  18. Marc RE, Stell WK, Bok D, Lam DMK (1978) GABA-ergic Pathways in the Goldfish Retina. J Comp Neurol 182: 221–245.PubMedCrossRefGoogle Scholar
  19. Marc RE (1986) Neurochemical stratification in the inner plexiform layer of the vertebrate retina. Vision Res. 26: 223–238.PubMedCrossRefGoogle Scholar
  20. Meyer DL, Gerwerzhagen K, Fiebig E, Ahlswede F, Ebbesson SOE (1983) An isthmooptic system in a bony fish. Cell Tiss Res 231: 129–133CrossRefGoogle Scholar
  21. Münz H, Claas, B (1981) Centrifugal innervation of the retina in cichlid and poecilid fishes. A horseradish peroxidase study. Neurosci Lett 22: 223–226CrossRefGoogle Scholar
  22. Münz H, Claas B, Stumpf WE, Jennes L (1982) Centrifugal innervation of the retina by luteinizing hormone releasing hormone ( LHRH)-immunoreactive telencephalic neurons in teleostean fishes. Cell Tiss Res 222: 313–321Google Scholar
  23. Negishi K, Drujan B (1978) Effects of catecholamines on the horizontal cell membrane potential in the fish retina. Sens Proc 2: 388–395Google Scholar
  24. Sandeman DC, Rosenthal NP (1974) Efferent axons in the fish optic nerve and their effect on the retinal ganglion cell. Brain Res 68: 41–54PubMedCrossRefGoogle Scholar
  25. Sheldon RE (1909) The nervus terminalis in the carp. J Comp Neurol 19: 192–201Google Scholar
  26. Springer AD (1983) Centrifugal innervation of goldfish retina from ganglion cells of the Nervus Terminalis. J Comp Neurol 214: 404–416CrossRefGoogle Scholar
  27. Stell WK, Walker SE, Chohan KS, Ball AK (1984) The goldfish nervus terminalis: A luteinizing hormone-releasing hormone and molluscan carioexcitatory peptide immunoreactive olfactoretinal pathway. Proc Nat’l Acad Sci USA 81: 940–944CrossRefGoogle Scholar
  28. Stell WK, Walker SE, Ball AK (1987) Functional-anatomical studies on the terminal nerve projection to the retina of bony fishes. Ann NY Acad Sci 519: 80–96PubMedCrossRefGoogle Scholar
  29. Weiler R, Kohler K, Kirsch M, Wagner H-J (1988) Glutamate and dopamine induce synaptic plasiticity in horizontal cell dendrites of fish retina. Neurosci Lett, in pressGoogle Scholar
  30. Walker SE, Stell WK (1986) Gonadotropin-releasing hormone (GnRF), Molluscan Cardioexcitatory peptide ( FMRFamide), enkephalin and related neuropeptides affect goldfish retinal ganglion cell activity. Brain Res 384: 262–273Google Scholar
  31. Wolburg H, Kurtz-Isler G (1985) Dynamics of gap junctions between horizontal cells in the goldfish retina. Exp Brain Res 60: 397–401PubMedCrossRefGoogle Scholar
  32. Witkovsky P (1971) Synapses made by myelinated fibres running to the teleost and elasmobranch retinas. J Comp Neurol 142: 205–222CrossRefGoogle Scholar
  33. Zucker C, Dowling J (1987) Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost retina. Nature 330: 166–168PubMedCrossRefGoogle Scholar
  34. Yu KL, Nahorniak CS, Peter RE, Corrigan A, Rivier JE, Vale WE (1987) Brain distribution of radioimmunoassayable gonadotropin-releasing hormone in female goldfish: Seasonal variation and periovulatory changes. Gen. Comp. Endocrin. 67: 234–24Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Alexander K. Ball
    • 1
  • William K. Stell
    • 2
  • Diane A. Tutton
    • 1
  1. 1.Department of AnatomyMcMaster UniversityHamiltonCanada
  2. 2.Department of AnatomyThe University of CalgaryCalgaryCanada

Personalised recommendations