Structural Organization and Development of Dorsally-Directed (Vertical) Asymmetrical Amacrine Cells in Rabbit Retina

  • E. V. Famiglietti
Conference paper
Part of the NATO ASI Series book series (volume 31)

Abstract

Amacrine cells are key elements in the inner retina, interposed between ganglion cells and neurons of simpler organization in the outer retina. Because ganglion cells exhibit a diversity of form and function (Cajal, ’93; Cleland and Levick, ’74; Famiglietti and Kolb, ’76; Caldwell and Daw, ’78; Famiglietti and Siegfried, ’79; Famiglietti, ’87), the roles of amacrine cells are necessarily diverse. This diversity is reflected in variations of morphology (Cajal, ’93; Boycott and Dowling, ’69; Famiglietti and Kolb, ’75; Famiglietti and Siegfried, ’80Ø), neurotransmitter localization (Brecha, ’83), synaptic connectivity (Famiglietti and Kolb, ’75; Famiglietti, ’83), and neurotransmitter function (Daw et al., ’88,’89).

Keywords

Dopamine Epoxy Retina Stratification Xylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow HB, Levick WR (1965) The mechanism of directiona1ly selective units in rabbitfs retina. J Physiol (Lond) 178: 477–504Google Scholar
  2. Boycott BB, Dowling JE (1969) Organisation of the primate retina: light microscopy. Phil Trans Roy S oc Lond B 225: 109–184CrossRefGoogle Scholar
  3. Brecha NC (1983) Retinal neuro-transmitters: histochemica1 and biochemical studies. Enson PC (ed) Chemical neuroanatomy Raven Press New YorkGoogle Scholar
  4. Cajal SR y (1893) La rètine des vertébrés. La Cèllule 9: 17–257Google Scholar
  5. Caldwell JHf Daw NW, (1978) New properties of rabbit retinal ganglion cells. J Physiol (Lond) 276: 257–276Google Scholar
  6. Cleland BG and Levick WR (1974) Properties of rarely encountered types of ganglion cells in the cat’s retina and lateral geniculate nucleus. J Physiol (Lond) 240: 457–492Google Scholar
  7. Daw NW, Brunken WJ, Jensen RJ (1988) The function of monoamines in the retina. Weiler R and Osborne N (eds). The neurobiology of the inner retina. Springer Heidelberg in pressGoogle Scholar
  8. Daw, NW, Brunken WJ, Parkinson D (1989) Function of synaptic transmitters in the retina. Ann Rev Neurosci in pressGoogle Scholar
  9. Famiglietti EV (1983) ON and OFF pathways through amacrine cells in mammalian retina: the synaptic connections of “starburst” amacrine cells. Vision Res 23: 1265–1279PubMedCrossRefGoogle Scholar
  10. Famiglietti EV (1987) Morphological classification of ganglion cells in rabbit retina. Abstr Soc Neurosci 13: 380Google Scholar
  11. Famiglietti EV Jr, Kolb H (1975) A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of cat retina. Brain Res 84: 293–300PubMedCrossRefGoogle Scholar
  12. Famiglietti EV Jr, Kolb H (1976) Structural basis for ON- and OFF-center responses in retinal ganglion cells. Science 194: 193–195PubMedCrossRefGoogle Scholar
  13. Famiglietti EV Jr, Siegfried EC (1979) Quantitative analysis of ganglion cells in rabbit retina. Invest Ophthalmol 18 (Suppl): 84Google Scholar
  14. Famiglietti EV Jr, Siegfried EC (1980) The amacrine cells of rabbit retina. Invest Ophthalmol 19 (Suppl): 70–71.Google Scholar
  15. Jacobson M (1968) Development of neuronal specificity in retinal ganglion cells of Xenopus. Develop Biol 17: 202–218PubMedCrossRefGoogle Scholar
  16. Jensen RJ, Daw NW (1984) Effects of dopamine antagonists on receptive fields of brisk cells and directionally selective cells in the rabbit retina. J Neurosci 4: 2972–2985PubMedGoogle Scholar
  17. Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16: 37–68PubMedGoogle Scholar
  18. Levick WR (1967) Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina. J Physiol (Lond) 188: 285–307Google Scholar
  19. Levick WR, Thibos LN (1982) Analysis of orientation bias in cat retina. J Physiol (Lond) 329: 243–261Google Scholar
  20. Levinthal AG, Schall JD (1983) Structural basis of orientation sensitivity of cat retinal ganglion cells. J Comp Neur 220: 465–475CrossRefGoogle Scholar
  21. Mariani AP (1983) A morphological basis for verticality detectors in the pigeon retina: asymmetric amacrine cells. Naturwissensch 70: 5368CrossRefGoogle Scholar
  22. Masland RH (1977) Maturation of function in the developing rabbit retina. J Comp Neur 175: 275–286PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • E. V. Famiglietti
    • 1
  1. 1.Department of Anatomy and Lions’ Sight CentreUniversity of Calgary Faculty of MedicineCalgaryCanada

Personalised recommendations