Advertisement

Establishing Consistent Thermodynamic Data on Vaporization Equilibria for Organic Compounds

  • Vladimir Majer
  • Kvetoslav Ruzicka
  • Vlastimil RuzickaJr.
  • Milan Zabransky
Conference paper
  • 163 Downloads

Abstract

Vapor pressure data are abundant and accurate near the normal boiling point while they are scarce and unreliable in the low pressure range. Data on thermal properties (enthalpy of vaporization and difference in the heat capacities of an ideal gas and the liquid) are available, however at temperatures far below the normal boiling point. All three properties are related by exact thermodynamic relationships and can be correlated simultaneously. This procedure can be used in the evaluation of thermodynamic data on vaporization equilibria as a rigorous consistency test and for producing recommended data sets. When a suitable correlation equation is selected a single set of parameters permits generation of consistent data for several properties between the triple and normal boiling points. The procedure is especially useful for calculating vapor pressures and/or enthalpies of vaporization far below the normal boiling point. In combination with the group contribution methods for estimation of thermal properties, the principle of simultaneous correlation can serve as a base in formulation of a new approach to the prediction of vapor pressures and/or enthalpies of vaporization at low reduced temperatures. Such a procedure would not require use of any traditional parameters (critical constants, acentric factor, etc.) which are not available for most high boiling compounds.

Keywords

Vapor Pressure Temperature Derivative Vaporization Equilibrium Normal Boiling Point Group Contribution Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrose D., Davies R.H. 1980; J Chem Thermodyn. 12, 871.CrossRefGoogle Scholar
  2. Benson S.W., Cruickshank F.R., Golden D.M., Haugen G.R., O’Neal H.E, Rodgers A.S., Shaw R., Walsh R. 1969; Chem. Rev. 69, 279.CrossRefGoogle Scholar
  3. Boublik T., Fried V., Hala E. 1984; The Vapour Pressures of Pure substances. Elsevier, Amsterdam.Google Scholar
  4. Bures M., Holub, R., Leitner, J., Vonka P. 1987; Sb. Vys. Sk. Chem.-Technol. v Praze, N8, part I, II.Google Scholar
  5. Domalski E.S., Evans W.H., Hearing E.D. 1984; Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. J. Phys. Chem. Ref. Data Vol. 13, Suppl. 1.Google Scholar
  6. Domalski E.S., Hearing E.D. 1988; J Phys. Chem. Ref. Data in press.Google Scholar
  7. Dykyj J., Repas M. 1979; The Vapor Pressures of Organic Compounds. Veda, Bratislava.Google Scholar
  8. Dykyj J., Repas M., Svoboda J. 1984; The Vapour Pressures of Organic Compounds. Veda, Bratislava.Google Scholar
  9. King M.B., Al-Najjar H. 1974; Chem. Eng. Sci. 29, 1003.CrossRefGoogle Scholar
  10. King M.B., Mahmud R.S. 1986; Fluid Phase Equilibria 27, 309.CrossRefGoogle Scholar
  11. Lencka M., Szafranski A., Maczynski A. 1984; Verified Vapor Pressure Data, Organic Compounds Containing Nitrogen. PWN-Polish Scientific Publishers, Warsaw.Google Scholar
  12. Luria M., Benson S.W. 1977; J. Chem. Eng. Data 22, 90.CrossRefGoogle Scholar
  13. Majer V., Davis W. 1988; Retrieval and Computation System ENTVAPOR, IUPAC Committee on Chemical Data Bases.Google Scholar
  14. Majer V., Svoboda V. 1985; Enthalpies of Vaporization of Organic Compounds, A Critical Review and Data Compilation. IUPAC Chemical Series No. 32, Blackwell, Oxford.Google Scholar
  15. Majer V., Svoboda V., Pick J. 1988; Heats of Vaporization of Fluids. Elsevier, Amsterdam.Google Scholar
  16. Malijevsky A., Majer V., Vondrak P., Tekac V. 1986; Fluid Phase Equilibria 28, 283.CrossRefGoogle Scholar
  17. McCann D.W., Danner R.P. 1984; Ind. Eng. Chem., Process Des. Develop. 23, 529.CrossRefGoogle Scholar
  18. Mosselman C, van Vugt V.H., Vos H. 1982; J. Chem. Eng. Data 27, 246.CrossRefGoogle Scholar
  19. Ohe S. 1976; Computer Aided Data Book of Vapor Pressures, Chem. Soc. Jap., Tokyo 1976.Google Scholar
  20. Rogalski M. 1985; Thermochem. Acta 90, 125.CrossRefGoogle Scholar
  21. Ruzicka K. 1986; Master thesis. Institute of Chemical Technology, Prague 1986.Google Scholar
  22. Ruzicka K., Majer V. 1986; Fluid Phase Equilibria 28, 253.CrossRefGoogle Scholar
  23. Scott D.W., Osborn A.G. 1979; J. Phys. Chem. 83, 2714.CrossRefGoogle Scholar
  24. Wilhoit R.C., Chao J., Hall K.R. 1985; J. Phys. Chem. Ref. Data 14, 1.CrossRefGoogle Scholar
  25. Zabransky M., Ruzicka V. Jr., Majer V., Domalski E.S. 1988; Critical Compilation of Heat Capacities of Liquids, On Going IUPAC Project.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Vladimir Majer
    • 1
  • Kvetoslav Ruzicka
    • 2
  • Vlastimil RuzickaJr.
    • 2
  • Milan Zabransky
    • 2
  1. 1.Department of ChemistryUniversity of Delaware NewarkUSA
  2. 2.Department of Physical ChemistryInstitute of Chemical TechnologyPragueCzechoslovakia

Personalised recommendations