Industrial Use of Group Contribution Methods for Estimation of Physical Properties

  • T. W. Copeman
  • P. M. Mathias
  • H. C. Klotz
Conference paper


Estimation methods for physical properties are widely used in industry. The number of chemical substances is enormous (several million) and thus complete or even partial experimental data are rare. In addition, experimental measurements are expensive and thus screening studies and preliminary design often must be done without measured properties.


Connectivity Index Tertiary Alcohol Molecular Connectivity Normal Boiling Point Group Contribution Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, D. S., Massaldi, H. A., and Prausnitz, J. M., “Vapor Pressures of Liquids as a Function of Temperature. Two Parameter Equation Based on Kinetic Theory of Fluids”, Ind. Eng. Chem., Fundam., 13, 259–262(1974).CrossRefGoogle Scholar
  2. AIChE Design Institute for Physical Property Data Project 801, Data Compilation Manual (1987).Google Scholar
  3. Benson, S. W., “Thermochemical Kinetics”, Chap. 2 Wiley, New York, (1968).Google Scholar
  4. Bondi, A., “Physical Properties of Molecular crystals, Liquids and Glasses”, John Wiley & Sons, Inc., New York, 1968.Google Scholar
  5. Burket, U. and Allinger, N. L., “Molecular Mechanics”, ACS Monograph 177, American Chemical Society, Washington, DC (1982).Google Scholar
  6. Boyd, D. B., and Lipkowitz, K. B., “Molecular Mechanics — The Method and its Underlying Philosophy”, J. Chem. Education, 59, 269–274(1982).CrossRefGoogle Scholar
  7. Donohue, M. D., and Vimelchand, P., “The Perturbed-Hard-Chain Theory, Extensions and Applications”, Fluid Phase Equilibria, 40, 185–211(1988).CrossRefGoogle Scholar
  8. Edwards, D. R., and Prausnitz, J. M., “Estimation of Vapor Pressures of Heavy Liquid Hydrocarbons Containing Nitrogen on Sulfur by a Group-Contribution Method”, Ind. Eng. Chem. Fundam., 20, 280–283 (1981).Google Scholar
  9. Fredenslund, A., Jones, R. L., and Prausnitz, J. M., “Group Contribution Estimation of Activity Coefficients in Nonideal Mixtures”, AIChE J., 21, 1086–1099(1975).CrossRefGoogle Scholar
  10. Gupte, P. A., and Danner, R. P., “Prediction of Liquid-Liquid Equilibria with UNIFAC: A Critical Evaluation”, Ind. Eng. Chem. Res., 26, 2036–2042(1987).CrossRefGoogle Scholar
  11. Hansch, C., and Leo, A., “Substituent Constants for Correlation Analysis in Chemistry and Biology”, Wiley, New York (1979).Google Scholar
  12. Irmann, F., “Eine einfache Korrelation zwischen Wasserloslichkelt und Struktur von Kohlenwasserstoffen und Halogenkohlenwasserstoffen”, Chem. Inq. Tech., 37, 789–798(1965).CrossRefGoogle Scholar
  13. Jensen, T., Fredunslund, A., and Rasmussen, P., “Pure-Component Vapor Pressures Using UNIFAC Group Contribution”, Ind. Eng. Chem. Fundam., 20, 239–246(1981).CrossRefGoogle Scholar
  14. Joback, K. G., S. M. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., June 1984.Google Scholar
  15. Kamlet, M. J., Doherty, R. M., Abboud, J. L. M., Abraham, M. H., and Taft R. W., “Linear Solvation Energy Relationships. 36. An Amphihydrogen Bonding Parameter, W, Which Allows Correlation and Prediction of Solubilities of Aliphatic Alcohols and Other Solutes in Water”, submitted to J. Am. Chem. Soc.Google Scholar
  16. Kier, L. B., and Hall, L. H., “Molecular Connectivity in Structure Activity Analysis”, Research Studies Press (a division of John Wiley and Sons), Letchworth, Hertfordshire, England (1985).Google Scholar
  17. Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H., “Handbook of Chemical Property Estimation Methods. Environmental Behavior of Orangic Compounds”, McGraw-Hill Book Company, 1982.Google Scholar
  18. Macknick, A. B., Winnick, J., and Prausnitz, J. M., “Vapor Pressures of Liquids as a Function of Temperature. Two-Parameter Equation Based on Kinetic Theory”, Ind. Eng. Chem. Fundam., 16, 392 (1977).CrossRefGoogle Scholar
  19. Magnussen, T., Rasmussen, P., and Fredenslund, A., “UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria”, Ind. Eng. Chem. Process Des. Dev., 20, 331–339(1981).CrossRefGoogle Scholar
  20. Miller, D. G., “Derivation of Two Equations for the Estimation of Vapor Pressures”, J. Phys. Chem., 68, 1399–1408(1964).CrossRefGoogle Scholar
  21. Moelwyn-Hughes, E. A., “Physical Chemistry”, 2nd Ed., Pergammon Press, Oxford, 1961.Google Scholar
  22. Peneloux, A., and Rauzy, E., “A Consistent Correction for Redlich-Kwang-Soave Volumes”, 8, 7–23(1982).Google Scholar
  23. Randic, M., “On Characterization of Molecular Branching”, J. Am. Chem. Soc., 97, 6609–15 (1975).CrossRefGoogle Scholar
  24. Reid, R. C., Prausnitz, J. M., and Poling, B. E. E., “The Properties of Gases and Liquids”, 4th Ed., McGraw-Hill Book Company (1987).Google Scholar
  25. Seaton, W. H., Freedman, E., and Treweek, D. N. N., “CHETAH — The ASTM Chemical Thermodynamic and Energy Release Program”, ASTM Data Series Publication DS 51, Philadelphia (1974).Google Scholar
  26. Skjold-Jorgensen, S., Kolbe, B., Gmehling, J., and Rasmussen, P., “Vapor-Liquid Equilibria by UNIFAC Group Contribution — Revision and Extension”, Ind. Eng. Chem. Process Des. Dev., 18, 714–722(1979).CrossRefGoogle Scholar
  27. Soave, G., “Improvements to the van der Waals Equation of State”, Chem. Eng. Sci., 39, 357–369(1986).Google Scholar
  28. Taft, R. W., Abboud, J. M., Kamlet, M. J., and Abraham, M. H., “Linear Solvation Energy Relationships”, J. Sol. Chem., 14, 153–186(1985).CrossRefGoogle Scholar
  29. Tiegs, D., Gmehling, J., Rasmussen, P., and Fredenslund, P., “Vapor-Liquid Equilibria by UNIFAC Group Contribution. 4. Revision and Extension”, Ind. Eng. Chem. Res., 26, 159–161(1987).CrossRefGoogle Scholar
  30. Thermodynamics Research Center, “Selected Values of Properties of Hydrocarbons,” Data Project, Texas A&M University, College Station, Texas (1987a).Google Scholar
  31. Thermodynamics Research Center, “Selected Values of Properties of Non-Hydrocarbons”, Data Project, Texas A&M University, College Station, Texas (1987b).Google Scholar
  32. Thomas, E. R., and Eckert, C. A., “Prediction of Limiting Activity Coefficients by a Modified Separation of Cohesive Energy Density Model and UNIFAC”, Ind. Eng. Chem. Process Design Develop., 23, 194–209(1984).CrossRefGoogle Scholar
  33. Wu, H. S., and Sandler, S. I., “Proximity Effects of the UNIFAC Model — I. Ethers”, submitted for publication, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • T. W. Copeman
  • P. M. Mathias
    • 1
  • H. C. Klotz
  1. 1.Management Information ServicesAir Products and Chemicals, Inc.AllentownUSA

Personalised recommendations