Application of Molecular Topology for the Estimation of Physical Data for Environmental Chemicals

  • Aleksandar Sabljić
Conference paper


The chemical industry has grown enormously in recent decades. It provides us with numerous vital chemicals (fuels, antibiotics and other drugs, plastics, pesticides, fertilizers, etc.) without which our society cannot survive and preserve its present life style and high living standards. Many of these substances have little or no adverse environmental effects, but some may be harmful to human health and the natural environment. Usually these effects only become apparent after wide and prolonged usage and at that point authorities introduce control measures. Clearly, there is a need for an effective evaluation and testing program to identify, before their use, those chemicals or classes of chemicals that present a potential environmental hazard. Such evaluation procedure should trace the fate of chemicals from discharge and dispersal to subsequent effects on biota. The ecotoxicological profile of a chemical is based on a sequence of interactions and effects controlled by its physical, chemical, and biological properties. At the first stage, a chemical released into the environment is subject to physical distribution between the atmosphere (air), water, soils, and sediment depending on its physico-chemical properties. At the same time, it can be chemically modified and degraded by abiotic processes or more often by microorganisms in the environment. During the following stage organisms will be exposed to the chemical either in its original or in its degraded or transformed form. The uptake of the chemical and degradation products will occur. Organisms may react to such exposure by variety of negligible and sublethal effects or ultimately by death.


Quantitative Model Bioconcentration Factor Molecular Connectivity Soil Sorption Environmental Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.H. Freed, in Dynamics, Exposure and Hazard Assesment of Toxic Chemicals, R. Hague, Ed., Ann Arbor Science, Ann Arbor, 1980.Google Scholar
  2. 2.
    E.E. Kenaga and C.A.I. Goring, in Aquatic Toxicology, J.C. Eaton, P.R. Parrish, and A.C. Hendricks, Eds., American Society for Testing and Materials, Philadelphia (PA) 1980, pp. 78–115.CrossRefGoogle Scholar
  3. 3.
    G.G. Briggs, J. Agric. Food Chem. 29 (1981) 1050–1059.CrossRefGoogle Scholar
  4. 4.
    J.C. Means, S.G. Wood, J.J. Hassett, and W.L. Banwart, Environ. Sci. Technol. 16(1982)93–98.CrossRefGoogle Scholar
  5. 5.
    D. Mackay, Environ. Sci. Technol. 16 (1982) 274–278.CrossRefGoogle Scholar
  6. 6.
    G.D. Veith, D.L. DeFoe, and B.V. Bergstedt, J. Fish. Res. Board Can. 36 (1979) 1040–1048.CrossRefGoogle Scholar
  7. 7.
    G.D. Veith, D.J. Call, and L.T. Brooke, Can. J. Fish. Aquat. Sci. 40 (1983) 743–748.CrossRefGoogle Scholar
  8. 8.
    A. Sabljić, Environ. Sci. Technol. 21 (1987) 358–366.CrossRefGoogle Scholar
  9. 9.
    A. Sabljić, in QSAR in Environmental Toxicology — II, Ed. K.L.E. Kaiser, D. Reidel Publishing Co., Dordrecht, Holland, 1987, pp. 309–332 and references therein.CrossRefGoogle Scholar
  10. 10.
    L.B. Kier and L.H. Hall, Molecular Connectivity in Structure-Activity Analysis, Research Studies Press, Chichester (UK), 1986 and references therein.Google Scholar
  11. 11.
    A. Sabljić and N. Trinajstiö, Acta Pharm. Jugosl. 31 (1981) 189–214.Google Scholar
  12. 12.
    N. Trinajstić, Chemical Graph Theory, CRC Press: Boca Raton, Florida, 1983.Google Scholar
  13. 13.
    A. Sabljić and M. Protiö, Bull. Environ. Contam. Toxicol. 28 (1982) 162–165.CrossRefGoogle Scholar
  14. 14.
    A. Sabljić and M. Protiö, Chem.-Biol. Interact. 42 (1982) 301 –310.CrossRefGoogle Scholar
  15. 15.
    A. Sabljić, J. Agric. Food Chem. 32 (1984) 243–246.CrossRefGoogle Scholar
  16. 16.
    R. Koch, Toxicol. Environ. Chem. 6 (1983) 87–96.CrossRefGoogle Scholar
  17. 17.
    H. Govers, C. Ruepert, and H. Aiking, Chemosphere 13 (1984) 227–236.CrossRefGoogle Scholar
  18. 18.
    Z. Gerstl and Ch. S. Helling, J. Environ. Sci. Health B22 (1987) 55–69.Google Scholar
  19. 19.
    A. Sabljić, Environ. Health. Perspect. (1988) in press.Google Scholar
  20. 20.
    A. Sabljić, Zeitschrift für Gesamt Hygiene 33 (1987) 493–496.Google Scholar
  21. 21.
    R.S. Boethling, Environ. Toxicol. Chem. 5 (1986) 797–806.CrossRefGoogle Scholar
  22. 22.
    R.S. Boethling, B. Gregg, R. Frederick, N.W. Gabel, S.E. Campbell, and A. Sabljić, Environ. Sci. Technol. (1988) submitted.Google Scholar
  23. 23.
    R.S. Boethling and A. Sabljić, Environ. Sci. Technol. (1988) submitted.Google Scholar
  24. 24.
    A. Sabljić, Bull. Environ. Contam. Toxicol. 30 (1983) 80–83.CrossRefGoogle Scholar
  25. 25.
    LH. Hall and L.B. Kier, Bull Environ. Contam. Toxicol. 32 (1984) 354–362.CrossRefGoogle Scholar
  26. 26.
    L.B. Kier and L.H. Hall, Bull Environ. Contam. Toxicol. 29 (1982) 121–126.CrossRefGoogle Scholar
  27. 27.
    M. Vighi and D. Calamari, Chemosphere 14 (1985) 1925–1932.CrossRefGoogle Scholar
  28. 28.
    J.L. Newsted and J.P. Giesy, Environ. Toxicol. Chem. 6 (1987) 445–461.Google Scholar
  29. 29.
    M. Protiö-Sabljić and A. Sabljić, Aquat. Toxicol. (1988) submitted.Google Scholar
  30. 30.
    Y. Yoshioka, T. Mizuno, Y. Ose, and T. Sato, Chemosphere 15 (1986) 195–203.CrossRefGoogle Scholar
  31. 31.
    M. Randiö, J. Amer. Chem. Soc. 97 (1975) 6609–6615.CrossRefGoogle Scholar
  32. 32.
    A. Sabljić, J. Chromatogr. 314 (1984) 1–12.CrossRefGoogle Scholar
  33. 33.
    A. Sabljić, J. Chromatogr. 319(1985) 1–8.CrossRefGoogle Scholar
  34. 34.
    A. Sabljić and M. Protić-Sabljić, Mol. Pharmacol. 23 (1983) 213–218.Google Scholar
  35. 35.
    M. Soskiö and A. Sabljić, Croat. Chim. Acta 60 (1987) 755–764.Google Scholar
  36. 36.
    P.G. Seybold, M. May, and U.A. Bagal, J. Chem. Educ. 64 (1987) 575–581.CrossRefGoogle Scholar
  37. 37.
    A.T. Balaban, I. Motoc, D. Bonchev, and O. Mekenyan, Top. Curr. Chem. 114 (1983)21–55.CrossRefGoogle Scholar
  38. 38.
    Program GRAPH III is now fully operational and it is available for distribution. More details about this program and conditions for its distribution are available on request from the author.Google Scholar
  39. 39.
    C.T. Chiou, P.E. Porter, and D.W. Schmedding, Environ. Sci. Technol. 17 (1983) 227–231.CrossRefGoogle Scholar
  40. 40.
    R.P. Davis and A.J. Dobbs, Water Res. 18 (1984) 1253–1262.CrossRefGoogle Scholar
  41. 41.
    D.N. Brooke, “A comparison of four methods for the prediction of fish bioconcentration factors”, Building Research Establishment, Note No. 163/84, Department of Environment, UK, 1984.Google Scholar
  42. 42.
    D.L. Geiger, C.E. Northcott, D.J. Call, and L.T. Brooke, (Editors), 1984/85. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas). Vol.I and II, Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, Wisconsin, 414 and 326 pp.Google Scholar
  43. 43.
    S.W. Karickhoff, D.S. Brown, and T.A. Scott, Water Res. 13 (1979) 241 –248.CrossRefGoogle Scholar
  44. 44.
    A. Spacie, P.F. Landrum, and G.J. Leversee, Ecotoxicol. Environ. Safety 7 (1983) 330–341.CrossRefGoogle Scholar
  45. 45.
    W.B. Neely, D.R. Branson, and G.E. Blau, Environ. Sci. Technol. 8 (1974) 1113–1115.CrossRefGoogle Scholar
  46. 46.
    M. Ogata, K. Fujisawa, Y. Ogino, and E. Mano, Bull. Environ. Contam. Toxicol. 33 (1984) 561–567.CrossRefGoogle Scholar
  47. 47.
    R.L. Lipnick, D.E. Johnson, J.H. Gilford, C.K. Blekings, and L.D. Newsome, Environ. Toxicol. Chem. 4 (1985) 281–296.CrossRefGoogle Scholar
  48. 48.
    H. Konemann, Toxicology 19 (1981) 209–221.CrossRefGoogle Scholar
  49. 49.
    L.S. McCarty, P. Hodson, G. Craig, and K. Kaiser, Environ. Toxicol. Chem. 4 (1985) 595–606.CrossRefGoogle Scholar
  50. 50.
    J.C. McGowan and A. Mellors, Bull. Environ. Contam. Toxicol. 36 (1986) 881–887.CrossRefGoogle Scholar
  51. 51.
    V. Kozak, G. Simsiman, G. Chesters, D. Stensby, and J. Harkin, Review of the environmental effects of pollutants XI: Chlorophenols. EPA-600/1-79-012. U.S. Environmental Protection Agency, Cincinnati, OH, 1979, 228 pp.Google Scholar
  52. 52.
    L.J. Mullins, Chem. Rev. 54 (1954) 289–323.CrossRefGoogle Scholar
  53. 53.
    G.M. Omann and J.R. Lakowicz, Biochem. Biophys. Acta 684 (1982) 83–95.CrossRefGoogle Scholar
  54. 54.
    S.H. Roth, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39 (1980) 1595–1599.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Aleksandar Sabljić
    • 1
  1. 1.Institute Ruder BoškovićZagrebCroatia, Yugoslavia

Personalised recommendations