Statistical Thermodynamics: Current Perspectives and Limitations of Fluid Property Estimation

  • K. Lucas
Conference paper

Abstract

Statistical thermodynamics provides a simple formal connection between the thermodynamics of a system, as represented by its free energy A, and the molecular properties of a system, as represented by its canonical partition function Q [1]:
$${{\rm{A}}^{{\rm{(T,V,\{ }}{{\rm{N}}_{\rm{j}}}{\rm{\} )}}}}\,{\rm{ = }}\,{\rm{ - }}\,{\rm{kT}}\,{\rm{ln}}\,{\rm{Q(T,V,\{ }}{{\rm{N}}_{\rm{j}}}{\rm{\} ),}}$$
(1)
where k is Boltzmann’s constant, T is the thermodynamic temperature, V the volume, {Nj} the total amount of molecule numbers of the various components, and
$${\rm{Q}}\,{\rm{ = }}\,\mathop {\rm{\Sigma }}\limits_{\rm{i}} \,{\rm{e}}{\,^{{\rm{ - E}}{}_{\rm{i}}{\rm{/kT,}}}}$$
(2)
Here Ei, the molecular energy of the system in its quantum state i, is the key quantity.

Keywords

Entropy Argon Propanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Lucas: Applied Statistical Thermodynamics (in German) Springer 1986Google Scholar
  2. [2]
    Shimanouchi, T.; Matsuura, H.; Ogawa, Y.; Harada, F.: J. Phys. Chem. Ref. Data 9 (1980) 1149CrossRefGoogle Scholar
  3. [3]
    Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; Pople, J.A.: Ab Inition Molecular Orbital Theory. John Wiley & Sons, New York 1986Google Scholar
  4. [4]
    Ameling, W.; Ripke, M.; Lucas, K.: Int. J. Thermophysics, to be publishedGoogle Scholar
  5. [5]
    Luckas, M.; Lucas, K.: Fluid Phase Equilibria, submittedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Lucas
    • 1
  1. 1.GHS DuisburgDuisburgFederal Republic of Germany

Personalised recommendations