Meson Spectroscopy in Radiative J/ψ Decays and Hadron Production

  • Gerald Eigen
Conference paper


Quantum Chromodynamics (QCD) predicts that gg bound states (glueballs) and q q g bound states (hybrids) should exist along with ordinary mesons and baryons in 1-2.5 GeV mass region. Experimentally, however, the spectroscopy of glueball, hybrids and mesons are very close related. The main signature is the observation of extra states which do not fit into q q nonets. Glueballs are, in addition, SU(3) flavor singlets and should be produced in gluon enriched channels such as radiative J/ψ decays, double pomeron exchange or OZI-violating decays. They should not occur in γγ interactions nor in peripheral hadron production. Therefore, the identification of glueballs and hybrids depends crucially on a complete understanding of all nearby q q nonets. Several candidates have been observed, among which the τ/η(1440), and the θ/f 2(1720) are at present the most promising. This brief report will present new results on the following topics: production of scalar states in radiative J/ψ decays by Mark III, partial wave analyses of the K K π system produced in K - p and π - p collisions by LASS and the BNL-E771 group, observation of pseudoscalars in two-vector-meson final states (VV) seen in radiative J/ψ decays by Mark III and a study of the ωω mass spectrum produced in π - p collisions by GAMS.


Dalitz Plot Invariant Mass Spectrum Partial Wave Analysis Heavy Flavor Scalar Glueball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. de Grand, Phys. Rev. DS6, 176(1987)Google Scholar
  2. 1a.
    A. Patel et al., Phys. Rev. Lett. 57, 1288(1986).ADSCrossRefGoogle Scholar
  3. 2.
    e.g.: K. Ishikawaet al., Phys. Lett. 116B, 429(1982)ADSCrossRefGoogle Scholar
  4. 2a.
    K. Ishikawaet al., ibid. 120B, 387(1983).ADSCrossRefGoogle Scholar
  5. 3.
    K. Au, D. Morgan and M. Pennington, Phys. Rev. Lett. 167, 229(1986).CrossRefGoogle Scholar
  6. 4.
    D. Coffman et al., submitted to XXIV. Int. Conf. on HEP, Munich 1988.Google Scholar
  7. 5.
    S. Sharpe, R. L. Jaffe and M. Pennington, Phys. Rev. D30, 1013(1984).ADSGoogle Scholar
  8. 6.
    T. Bolton, Ph. D. Thesis, MIT 1988 (unpublished).Google Scholar
  9. 7.
    A. Birmann et al., submitted to XXIV. Int. Conf. on HEP, Munich 1988.Google Scholar
  10. 8.
    D. Aston et al., Phys. Lett. 201B, 573(1988).ADSCrossRefGoogle Scholar
  11. 9.
    S. Oneda and A. Miyazaki, RIFP-710(1987).Google Scholar
  12. 10.
    C. Daum et al., Nucl. Phys. B187, 1(1981).ADSCrossRefGoogle Scholar
  13. 11.
    S. Meshkov, preprint Calt-68–1504, Pasadena 1988.Google Scholar
  14. 12.
    R. M. Baltrusaitis et al., Phys. Rev. D33, 1222(1986)ADSGoogle Scholar
  15. 12a.
    R. M. Baltrusaitis et al., Phys. Rev. Lett. 55, 1723(1985).ADSCrossRefGoogle Scholar
  16. 13.
    A. Etkin et al., Phys. Rev. Lett. 49, 1620(1982).ADSCrossRefGoogle Scholar
  17. 14.
    S. Godfrey and N. Isgur, Phys. Rev. D32, 189(1985)ADSGoogle Scholar
  18. 14a.
    D. P. Stanley and D. Robson, Phys. Rev. D21, 3180(1980).ADSGoogle Scholar
  19. 15.
    S. Sadovsky, Preprint IHEP 88–163, Serpukov(1988).Google Scholar
  20. 16.
    H. Albrecht et al., Phys. Lett 198B, 577(1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Gerald Eigen
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations