Searches for Dark Matter Particles

  • Bernard Sadoulet
Conference paper


One of the most important problems in Astrophysics and may be even in science today is that of the nature of the Dark Matter. There is a wide consensus[l] that at least 90% of the mass in the Universe does not shine. It is only detected through its gravitational interaction. The nature of this dark matter however is the subject of an intense debate[2]. The traditional view that it is made out of baryons[3] encounters significant difficulties with primordial nucleosynthesis[4], the absence of any electromagnetic radiation[5], and the conventional mechanisms of galaxy formation[6]. On the other hand, it is quite natural in many particle physics models to expect non-baryonic particles to be produced in the hot early universe, and to have today a density high enough to explain the observed Dark Matter. In this review, we summarize the experimental constraints on this scenario[7].


Dark Matter Dark Matter Particle Light Neutrino Annihilation Cross Section Annihilation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trimble, V., Ann. Rev. Astron. Astrophys.,25, 425(1987).ADSCrossRefGoogle Scholar
  2. For a summary for particle physicists see Sadoulet,B., “The Dialogue between Particle Physics and Cosmology”, In Proceedings of The Fifteenth SLAC Summer Institute on Particle Physics,(SLAC, Stanford University) 277(1988).Google Scholar
  3. 3.
    e.g. Bahcall, J.N. and Casertano, S., Ap. J.,293, L7(1985).ADSCrossRefGoogle Scholar
  4. 4.
    Yang, J. et al., Ap. J.,281 493(1984).ADSCrossRefGoogle Scholar
  5. 5.
    Hegyi,D. and 01ive,K.A., Ap.J.,303, 56(1986).ADSCrossRefGoogle Scholar
  6. Silk, J., “Galaxy Formation” Lectures presented at Plasma Astrophysics School, Varenna, !984 and at Cargese Summer School on Particle Physics and Cosmology, 1984,(1984).Google Scholar
  7. 7.
    A more complete review can be found in PrimackJ.R.,Seckel,D. and Sadoulet,B., Ann.Rev.Nucl.Part.Sci.,38, 751(1988).ADSCrossRefGoogle Scholar
  8. 8.
    Peccei, R. D. and Quinn, H, Phys. Rev. Lett.,38, 1440(1977).ADSCrossRefGoogle Scholar
  9. Weinberg, S., Phys. Rev. Lett.,40, p.223(1978).ADSCrossRefGoogle Scholar
  10. Primack, J.R., Lectures Presented at the International School of Physics“Enrico Fermi” Varenna, Italy, June 26-July 6, 1984,SLAC-PUB-3387(1984)Google Scholar
  11. 10.
    Frenk, C.S.,White, S.M.D.,Efstathiou, G. et al., Nature,317,595(1986).ADSCrossRefGoogle Scholar
  12. Spergel, D.N. .Weinberg, D.H.,Gott, J.R., Princeton Univ. Observatory preprint,(1988).Google Scholar
  13. 12.
    Lee, B.W.,Weinberg,S., Phys. Rev. Lett.,39, 165(1977).ADSCrossRefGoogle Scholar
  14. 13.
    Wilczek, F., Phys. Rev. Lett.,40, p.279(1978).ADSCrossRefGoogle Scholar
  15. Dine, M., Fischler, W. and Srednicki, M., Phys. Lett.,104B, 199(1981).ADSCrossRefGoogle Scholar
  16. 14.
    Dearborn, D.S.P., Schramm, D.N. and Steigman, G, Phys. Rev. Lett.,56, 26(1986).ADSCrossRefGoogle Scholar
  17. Raffelt, G., Phys. Lett.,166B, 402(1986) and Phys. Rev.,D33, 897(1986).ADSCrossRefGoogle Scholar
  18. Mayle, R. et al., Fermilab-Pub-87:225,(1987).Google Scholar
  19. Ellis, J. et al., Phys. Lett.,193B, 525(1987).ADSCrossRefGoogle Scholar
  20. Raffelt, G.,Seckel, D., Phys. Rev. Lett.,60, p.1793(1988).ADSCrossRefGoogle Scholar
  21. Turner,M.S., Phys.Rev.Lett,60, 1797(1988)ADSCrossRefGoogle Scholar
  22. 16.
    Sikivie, P., Phys. Rev. Lett.,51,1415(1983) and erratum,52,695(1984).ADSCrossRefGoogle Scholar
  23. F.Nezrik, Private communicationGoogle Scholar
  24. 18.
    De Panfilis, S. et al., Phys. Rev. Lett.,59, 839(1987).ADSCrossRefGoogle Scholar
  25. 19.
    Goodman, M.W. and Witten, E., Phys.Rev,.D31, 3059(1985).ADSGoogle Scholar
  26. Srednicki, M , and Olive, K.A.,Silk, J., UMN-TH-553/86, (1987).Google Scholar
  27. Krauss,L.M. et al., Ap.J.,299, 1001(1985).ADSCrossRefGoogle Scholar
  28. 21.
    Press,W.H.,Spergel,D.N., Ap.J.,296, 679(1985).ADSCrossRefGoogle Scholar
  29. Davis,R., AIP Conference Proceedings No. 126, “Solar Neutrinos and Neutrino Astronomy”(1986).Google Scholar
  30. 23.
    Gelmini,G.B.,Hall,LJ. and Lin,MJ., Nucl. Phys.,B281, 726(1987)ADSCrossRefGoogle Scholar
  31. Griest,K.,Sadoulet,B.,“Model Independence of Constraints on Dark Matter Particles” In preparation.Google Scholar
  32. 25.
    Silk,J. and Srednicki,M., Phys. Rev. Lett.,53, 624–627(1984).ADSCrossRefGoogle Scholar
  33. 26.
    Trombka, J.I.,Fichtel, C.E., Physics Reports,97,173(1983).ADSCrossRefGoogle Scholar
  34. Freese,K. and Silk,J., Preprint University of Berkeley,(1988).Google Scholar
  35. 28.
    Stecker, F.W., Rudaz, S., Walsh, T.F., Phys. Rev. Lett.,55, 2622 (1985).ADSCrossRefGoogle Scholar
  36. 29.
    Buffington et al., Ap. J.,248, 1179(1981).ADSCrossRefGoogle Scholar
  37. 30.
    Ahlen, S.P. et al., Phys. Rev. Lett., 61,145(1988).ADSCrossRefGoogle Scholar
  38. Moats,A. et al., Proceedings of the 1988 Erice School on Cosmic Ray Astrophysics.Google Scholar
  39. S. Ritz, this conference. Ellis,J. et al., CERN Preprint TH5062/88,(1988).Google Scholar
  40. Sadoulet,B., in Proceedings of the 13th Texas Symposium on Relativistic Astrophysics,(World Scientific, Singapore) p. 260(1987). More precise rates in specific models have been given by Ellis and Flores, GriestGoogle Scholar
  41. 33.
    Drukier, A.K.,Freese, K. and Spergel, D.N., Phys.Rev.,D33, 3495(1986).ADSGoogle Scholar
  42. 34.
    Krauss, L.,Srednicki,M.,Wilczek,F., Phys. Rev.,D33, 2079(1986).ADSGoogle Scholar
  43. Spergel, D.N., Astrophysics Preprint Series,IASSNS-AST 87/2,(1987).Google Scholar
  44. 36.
    Ahlen, S.P. et al., Phys. Lett. B,195, 603(1987).ADSCrossRefGoogle Scholar
  45. 37.
    Caldwell, D.O.,sEisberg, R.M.,Grumm, D.M. et al., Phys. Rev. Lett., 61,510(1988).ADSCrossRefGoogle Scholar
  46. 38.
    Sadoulet,B. et al., Astrophys. J.,324, L75(1988).ADSCrossRefGoogle Scholar
  47. Rich, J. and Spiro, M., DPhPE, CEN-Saclay,(1987).Google Scholar
  48. For a recent review and a complete set of references see Sadoulet,B., IEEE Trans, on Nucl. Sci.,NS-36, 47(1988).Google Scholar
  49. However a small scalar component could still be detected with spinless materials as shown by Griest,K., Submitted to Phys.Rev.Lett.,(1988).Google Scholar
  50. 42.
    Griest,K. and Seckel,D., Nucl.Phys.,B283, 681(1987)ADSCrossRefGoogle Scholar
  51. 43.
    Gaisser,T.K.,Steigman,G. and Tilav,S., Phys.Rev.,D34, 2206(1986).ADSGoogle Scholar
  52. HagelinJ.S.,Ng,K. and 01ive,K.A., Phys.Lett.,180B, 375(1987).Google Scholar
  53. Ng,K.,O1ive,K.A. and Srednicki,M., Phys.Lett.,188b, 138(1987).ADSGoogle Scholar
  54. Olive,K. A. and Srednicki,M., Phys. Lett.,205, 553(1988).CrossRefGoogle Scholar
  55. 44.
    Ritz,S. and Seckel,D., Nucl.Phys.,B304, 877(1988)ADSCrossRefGoogle Scholar
  56. 45.
    EllisJ.,Flores,R.A.,Ritz,S., Phys.Lett.,198, 393(1987).CrossRefGoogle Scholar
  57. B.Kuznik private communication.Google Scholar
  58. Y.Totsuka,private communication.Google Scholar
  59. Hirata,K.S. et al., in Proceedings of the XIIIrd Rencontres de Moriond,(Edit. Frontieres), (1988).Google Scholar
  60. D. Casper, private communication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Bernard Sadoulet
    • 1
  1. 1.Department of Physics and Lawrence LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations