Coset Space Dimension Reduction of Gauge Theories

  • K. Farakos
  • D. Kapetanakis
  • G. Koutsoumbas
  • G. Zoupanos
Conference paper

Abstract

A very interesting approach in the attempts to unify all the interactions is to consider that a .unification takes place in higher than four dimensions. The most ambitious program based on the old Kaluza-Klein[3] idea is not able to reproduce the low energy chiral nature of the weak interactions. Moreover it is not self consistent since the assumed space-time configurations cannot be solutions of the higher dimensional theory. A suggested way out was the introduction of Yang-Mills fields[4] in the higher dimensional theory. This solution, despite the fact that it is not as attractive as the original program, found a very natural role in superstring theories[5]. From the particle physics point of view the most important question is how such a theory behaves in four dimensions and in particular in low energies. Therefore most of our efforts concern studies of the properties of an attractive scheme, the Coset-Space-Dimensional-Reduction (C.S.D.R) scheme[6,7] which permits the study of the effective four dimensional theory coming from a gauge theory defined in higher dimensions.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Work partially supported by Greece-F.R.Germany Bilateral Agreement and partially by the General Secretariat of Research and Technology.Google Scholar
  2. 2.
    Presented by G. Zoupanos.Google Scholar
  3. 3.
    Th. Kaluza: Sitzungber. Preuss.Acad. Wiss. K1 (1921) 966Google Scholar
  4. 3a.
    O. Klein: Z. Phys. 37 (1926) 895.ADSCrossRefMATHGoogle Scholar
  5. 4.
    Z. Horvath, L. Palla, E. Cremmer and J. Scherk: Nucl.Phys. B127 (1977) 205.CrossRefGoogle Scholar
  6. 5.
    For a review see: M.B. Green, J.H. Schwarz and E. Witten: In Superstring theory. Volumes I and II Cambridge Univ. Press (1987)MATHGoogle Scholar
  7. 6.
    P. Forgacs and N.S. Manton: Comm.Math.Phys. 72 (1980) 15MathSciNetADSCrossRefGoogle Scholar
  8. 6a.
    E. Witten: Phys.Rev.Lett. 38 (1977) 121ADSCrossRefGoogle Scholar
  9. 6b.
    J. Harnad, S. Schnider and J. Tafel: Lett.Math.Phys. 4 (1980) 41CrossRefGoogle Scholar
  10. 6c.
    N.S. Manton: Nucl.Phys. B193 (1981)Google Scholar
  11. 6d.
    G. Chapline and N.S. Manton: Nucl.Phys. B184 (1981) 391ADSCrossRefGoogle Scholar
  12. 6e.
    K. Farakos et. aL, Nucl.Phys. B291 (1987) 128MathSciNetADSCrossRefGoogle Scholar
  13. 6f.
    K. Farakos et. aL, Phys.Lett. B191 (1987) 135MathSciNetADSCrossRefGoogle Scholar
  14. 6g.
    G. Chapline and R. Slansky: Nucl.Phys. B209 (1982) 461ADSCrossRefGoogle Scholar
  15. 6h.
    G. Chapline and B.Grossman: Phys.Lett. B143 (1984) 161MathSciNetADSCrossRefGoogle Scholar
  16. 6i.
    P. Forgacs and G. Zoupanos: Phvs.Lett.B148 (1984)99MathSciNetADSCrossRefGoogle Scholar
  17. 6j.
    F.A.Bais et al.: Nucl.Phys. B263 (1986) 557MathSciNetADSCrossRefGoogle Scholar
  18. 6k.
    D. Lust and G.Zoupanos: Phys.Lett. B165 (1985) 309MathSciNetADSCrossRefGoogle Scholar
  19. 6l.
    K.J. Barnes et al.: Z.Phys.C33 (1987) 427.ADSGoogle Scholar
  20. 7.
    K. Farakos et al.: Phys. Lett. B 211 (1988) 322.ADSCrossRefMathSciNetGoogle Scholar
  21. 8.
    Y. Hosotani: Phys.Lett. B126 (1983) 309ADSCrossRefGoogle Scholar
  22. 8a.
    Y. Hosotani: Phys.Lett. B 129(1983) 193ADSCrossRefGoogle Scholar
  23. 8b.
    E. Witten: Nucl. Phys. B258 (1985) 75MathSciNetADSCrossRefGoogle Scholar
  24. 8c.
    G. Zoupanos: Phys.Lett.B201 (1988) 301.MathSciNetADSCrossRefGoogle Scholar
  25. 8d.
    F. Freire, J.C. Romao, A. Barroso: Phys. Lett. B206 (1988) 491MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • K. Farakos
    • 1
  • D. Kapetanakis
    • 1
  • G. Koutsoumbas
    • 1
  • G. Zoupanos
    • 1
  1. 1.Physics DepartmentNational Technical UniversityAthensGreece

Personalised recommendations