Advertisement

Variational Principles in Pattern Theory

  • W. Güttinger
  • G. Dangelmayr
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 42)

Abstract

The understanding of pattern formation and its dual, pattern recognition, is one of the most exciting areas of present research. It is the question of how complex systems can generate coherent global structures and how systems are designed which, by means of sensory and perceptional mechanisms, can construct internal representations of patterns in the outside world. The field represents a remarkable confluence of several different strands of thought.

Keywords

Feature Selection Variational Principle Pattern Formation Decision Function Nonlinear Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Amit, H. Gutfreund and H. Sompolinsky, Phys. Rev. A 32 (1985), 1007MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    E. R. Caianiello, Neural Networks, Springer 1968; and in Progress in Quantum Field Theory, H. Ezawa and S. Kamefuchi (eds.), North Holland 1986Google Scholar
  3. 3.
    V. Cerny, J. Optimization Theory and Appl. 45 (1985), 41MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    G. Dangelmayr and W. Güttinger, Geophys. J. R. Astr. Soc. 71 (1982), 79MATHCrossRefGoogle Scholar
  5. 5.
    R. Eckmiller and Ch. v.d. Malsburg (eds.), Neural Computers, Springer 1988Google Scholar
  6. 6.
    K. S. Fu, Sequential Methods in Pattern Recognition and Machine Learning, Academic Press 1968Google Scholar
  7. 7.
    S. Geman and D. Geman, IEEE Trans. PAMI 6 (1984), 721MATHCrossRefGoogle Scholar
  8. 8.
    S. Geman and C.-R. Hwang, SIAM J. Contr. and Opt. 24 (1986), 1031MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    W. Güttinger and G. Dangelmayr (eds.), The Physics of Structure Formation, Springer 1987Google Scholar
  10. 10.
    H. Haken, Z. Phys. B 61 (1985), 329; B 61 (1985), 335MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Haken, in Physics of Cognitive Processes, E. R. Caianiello (ed.), World Scientific 1987Google Scholar
  12. 12.
    H. Haken, in Computational Systems - Natural and Artificial, H. Haken (ed.), p.2, Springer 1987Google Scholar
  13. 13.
    J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79 (1982), 2554MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J. J. Hopfield, Proc. Natl. Acad. Sci. USA 81 (1984), 3088ADSCrossRefGoogle Scholar
  15. 15.
    S. Kirkpatrick, J. Stat. Phys. 34 (1984), 975MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    W. A. Little, Math. Biosci. 19 (1974), 101MATHCrossRefGoogle Scholar
  17. 17.
    J. L. Lumley, Stochastic Tools in Turbulence, Academic Press 1970Google Scholar
  18. 18.
    M. Z. Nashed (ed.), Generalized Inverses and Applications, Academic Press 1976Google Scholar
  19. 19.
    C. Peterson and J. R. Anderson, Complex Systems 1 (1987), 995; 2 (1988), 59MathSciNetMATHGoogle Scholar
  20. 20.
    T. Poggio and C. Koch, Proc. R. Soc. Lond. B 226 (1985), 303ADSMATHCrossRefGoogle Scholar
  21. 21.
    T. Poggio and V. Torre, Artif. Intelligence Lab. Memo., no. 773, M.I.T. Cambridge, MassachusettsGoogle Scholar
  22. 22.
    L. Sirovich, in Proc. Int. Conf. Fluid Mech., Beijing 1987Google Scholar
  23. 23.
    D. J. Thouless, P. W. Anderson and R. G. Palmer, Phil. Mag. 35 (1977), 593ADSCrossRefGoogle Scholar
  24. 24.
    A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston and Sons 1977Google Scholar
  25. 25.
    S. Watanabe, Pattern Recognition: Human and Mechanical, Wiley 1985Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • W. Güttinger
    • 1
  • G. Dangelmayr
    • 1
  1. 1.Institute for Information SciencesUniversity of TübingenTübingenFed. Rep. of Germany

Personalised recommendations