Movement Detectors of the Correlation Type Provide Sufficient Information for Local Computation of the 2-D Velocity Field

  • W. Reichardt
  • R. W. Schlögl
  • M. Egelhaaf
Part of the Springer Series in Synergetics book series (SSSYN, volume 42)


The projection of the velocity vectors of objects moving in three-dimensional space on the image plane of an eye or a camera can be described in terms of a vector field. This so-called 2-D velocity field is time-dependent and assigns the direction and magnitude of a velocity vector to each point in the image plane. The 2-D velocity field, however, is a purely geometrical concept and does not directly represent the input site of a visual information processing system. The only information available to a visual system is given by the time-dependent brightness values as sensed in the image plane by photoreceptors or their technical equivalents. From spatio-temporal coherences in these changing brightness patterns motion information is computed. This poses the question about whether the spatio-temporal brightness distributions contain sufficient information to calculate the correct 2-D velocity field. Here we show that the 2-D velocity field generated by motion parallel to the image plane can be computed by purely local mechanisms.


Velocity Field Movement Detector Visual Information Processing System Developable Surface Local Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horn, B.K.P.: Robot Vision. MIT Press, Cambridge, Mass., 1987 )Google Scholar
  2. 2.
    Ullman, S.: Trends in Neurosci. 6, 177 (1983)CrossRefGoogle Scholar
  3. 3.
    Hildreth, E.C.: Proc. R. Soc. Lond. B. 221, 189 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    Hildreth, E.C., C. Koch.: Ann. Rev. Neurosci. 10, 477 (1987)CrossRefGoogle Scholar
  5. 5.
    Koch, C.: In Neural Computers, ed. R. Eckmiller, Ch. von der Malsburg (Springer, Berlin, Heidelberg 1988 ) p. 101Google Scholar
  6. 6.
    Adelson, E.H., J.A. Movshon: Nature 300, 523 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    Movshon, J.A., D.H. Adelson, M.S. Gizzi, W.S. Newesome: In Pattern Recognition Mechanisms, ed.C. Chagas, R. Gattass, C. Gross (Springer, Berlin, Heidelberg, New York, Tokyo 1985 ) p. 117Google Scholar
  8. 8.
    Hassenstein, B., W. Reichardt: Naturforsch. 11b, 513 (1956)Google Scholar
  9. 9.
    Reichardt, W.:In Principles of Sensory Communication, ed W.A. Rosenblith ( John Wiley, New York 1961 ) p. 303Google Scholar
  10. 10.
    van Doorn, A.J., J.J. Koenderink: Exp.Brain.Res. 45, 179 (1982)Google Scholar
  11. 11.
    van Doorn, A.J., J.J. Koenderink: ibid. 45, 189 (1982)Google Scholar
  12. 12.
    van Sai ten, J.P.H., G. Sperling: J. Opt. Soc. Am. A 1, 451 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    Wilson, H.R.: Biol. Cybern. 51, 213 (1985)CrossRefGoogle Scholar
  14. 14.
    Reichardt, W., A. Guo: ibid. 53, 285 (1986)Google Scholar
  15. 15.
    Egelhaaf, M., W. Reichardt: ibid. 56, 69 (1987)MATHGoogle Scholar
  16. 16.
    Reichardt, W.: J. Comp. Physiol. A 161, 533 (1987)CrossRefGoogle Scholar
  17. 17.
    Reichardt, W., R.W. Schlögl: in preparation (1988)Google Scholar
  18. 18.
    Courant, R., D. Hilbert: Methods of Mathematical Physics, Vol.II (Interscience Publishers, New York, London 1962)Google Scholar
  19. 19.
    Ballard, D.H., C.M. Brown: Computer Vision. (Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1982 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • W. Reichardt
    • 1
  • R. W. Schlögl
    • 2
  • M. Egelhaaf
    • 1
  1. 1.Max-Planck-Institut für Biologische KybernetikTübingenFed. Rep. of Germany
  2. 2.Max-Planck-Institut für BiophysikFrankfurt/MainFed. Rep. of Germany

Personalised recommendations