Physiological Concepts of Cardiovascular and Respiratory Control: Theoretical Basis and Applicability in Man

  • H. P. Koepchen
  • H.-H. Abel
  • D. Klüssendorf


Key concepts of the present symposium are: anaesthesia — physiology — internal medicine — innovation. What are the relationships among these concepts? We believe one of the innovations to lie precisely in their combination. Internal medicine, and especially anaesthesia, is to a considerable extent applied physiology. The still too rigid borders between the disciplines, especially in Germany, must be overcome to make the concepts and methods developed in one field fruitful for application in other fields. This is especially important for the application of basic physiological concepts to man. In this context we will confine our attention to one central point of view, that of neurovegetative regulation, in particular of the cardiovascular and respiratory systems. The term neurovegetative means neuronal regulation of the functions of vegetative organs and organ systems. Within this general framework the cardiovascular and respiratory regulatory systems form part of an interacting complex of many kinds of regulatory processes.


Heart Rate Variability Respiratory Control Respiratory Rhythm Phrenic Nerve Activity Physiological Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel HH, Klüßendorf D, Koepchen HP (1985) Pattern of somato-vegetative innervation in healthy humans during rest and mental load. Pflugers Arch [Suppl] 403: R51Google Scholar
  2. 2.
    Abel HH, Klüßendorf D, Koepchen HP (1985) Interaction of behavioural and chemical drive in ventilation and respiratory pattern during and after mental load in human subjects. Pflugers Arch [Suppl 2] 405: R50CrossRefGoogle Scholar
  3. 3.
    Abel HH, Klüßendorf D, Krause R, Koepchen HP (1985) Are enhanced respiratory oscillations of heart rate at rest in endurance-trained sportsmen related primarily to increased vagal tone? J Interdiscip Cycle Res 16: 240Google Scholar
  4. 4.
    Abel HH, Klüßendorf D, Koepchen HP (1986) Relations between spontaneous events in autonomic and respiratory innervation patterns in man. Pflugers Arch [Suppl] 406: R22Google Scholar
  5. 5.
    Angelone A, Coulter NA Jr (1964) Respiratory sinus arrhythmia: a frequency dependent phenomenon. J Appl Physiol 19: 479–482PubMedGoogle Scholar
  6. 6.
    Cohen MI (1979) Neurogenesis of respiratory rhythm in the mammal. Physiol Rev 59 (4): 1105–1173PubMedGoogle Scholar
  7. 7.
    Eckoldt K, Braun W, Lange V (1985) Heart rate at different autonomic states. J Interdiscip Cycle Res 16 (4): 252–253Google Scholar
  8. 8.
    Euler C von (1986) Brain stem mechanisms for generation and control of breathing pattern. In: Fishman AP, Cherniack NS, Widdicombe JG, Geiger SR (eds) The respiratory system. American Physiological Society, Bethesda, pp 1–67 (Handbook of physiology, sect 3, vol 2 )Google Scholar
  9. 9.
    Gauer OH, Henry JP (1963) Circulatory basis of fluid volume control. Physiol Rev 43: 423–481PubMedGoogle Scholar
  10. 10.
    Golenhofen K, Hildebrandt G (1957) Über spontanrhythmische Schwankungen der Muskeldurchblutung des Menschen. Z Kreislaufforsch 46: 257PubMedGoogle Scholar
  11. 11.
    Heinemann H, Stock G, Schaefer H (1973) Temporal correlations of responses in blood pressure and motor reaction under electrical stimulation of limbic structures in unanaesthetized, unrestrained cats. Pflugers Arch 343: 27–40PubMedCrossRefGoogle Scholar
  12. 12.
    Kenner T (1971) Dynamic control of flow and pressure in the circulation. Kybernetik 9: 215PubMedCrossRefGoogle Scholar
  13. 13.
    Koch E (1931) Die reflektorische Selbststeuerung des Kreislaufs. Steinkopff DresdenGoogle Scholar
  14. 14.
    Koepchen HP (1962) Die Blutdruckrhythmik. Steinkopff, DarmstadtGoogle Scholar
  15. 15.
    Koepchen HP (1969) Vegetative-somatic relationships in single neuron activity in the lower brain stem. In: Evans CR, Mulholland TB (eds) Attention in neurophysiology. Butterworth, London, pp 83–99Google Scholar
  16. 16.
    Koepchen HP (1972) Kreislaufregulation. In: Gauer O, Kramer K, Jung R (eds) Physiologie des Menschen, vol 3. Urban and Schwarzenberg, Munich, pp 327–406Google Scholar
  17. 17.
    Koepchen HP (1975) Atmungsregulation. In: Gauer O, Kramer K, Jung R (eds) Physiologie des Menschen, 2nd edn, vol 6. Urban and Schwarzenberg, Munich, pp 163–310Google Scholar
  18. 18.
    Koepchen HP (1983) Respiratory and cardiovascular “centres”: functional entirety or separate structures. In: Schlaefke ME, Koepchen HP, See WR (eds) Central neurone environment and the control systems of breathing and circulation. Springer, Berlin Heidelberg New York, pp 221–237Google Scholar
  19. 19.
    Koepchen HP (1984) History of studies and concepts of blood pressure waves. In: Miyakawa K, Koepchen HP, Polosa C (eds) Mechanisms of blood pressure waves. Japan Scientific Societies, Tokyo; Springer, Berlin Heidelberg New York, pp 3–23Google Scholar
  20. 20.
    Koepchen HP, Lazar H, Borchert J (1974) On the role of the nucleus infrasolitarius in the determination of respiratory periodicity. Proc IUPS Vol. IX, p. 81Google Scholar
  21. 21.
    Koepchen HP, Langhorst P, Seller H (1975) The problem of identification of autonomic neurons in the lower brain stem. Brain Res 87: 373–393CrossRefGoogle Scholar
  22. 22.
    Koepchen HP, Hilton SM, Trzebski A (eds) (1980) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. 23.
    Koepchen HP, Klüßendorf D, Sommer D (1981) Neurophysiological background of central neural cardiovascular-respiratory coordination: basic remarks and experimental approach. J Auton Nerv Syst 3: 335–368PubMedCrossRefGoogle Scholar
  24. 24.
    Koepchen HP, Abel HH, Klüßendorf D (1985) Heart-rate dynamics in healthy humans before, during and after a mental test. Pflugers Arch [Suppl 2] 405: R50CrossRefGoogle Scholar
  25. 25.
    Koepchen HP, Lazar H, Klüßendorf D, Hukuhara T (1986) Medullary apneusis by lesions and cooling in the ventrolateral solitary tract region and genesis of respiratory rhythm J Auton Nerv Syst, (Suppl. pp. 63–69)Google Scholar
  26. 26.
    Langhorst P, Schulz B, Schulz G, Lambertz M (1983) Reticular formation of the lower brainstem. A common system for cardiorespiratory and somatomotor functions: discharge patterns of neighbouring neurons influenced by cardiovascular and respiratory afferents. J Auton Nerv Syst 9: 411–432PubMedCrossRefGoogle Scholar
  27. 27.
    Litter WA, Honour J, Pugsley DJ, Sleight P (1975) Continuous recording of direct arterial pressure in unrestricted patients. Its role in the diagnosis and management of high blood pressure. Circulation 51: 1101–1106Google Scholar
  28. 28.
    Loeschcke HH (1960) Homoiostase des arteriellen CO2-Druckes und Anpassung der Lungenventilation an den Stoffwechsel als Leistungen eines Regelsystems. Klin Wochenschr 38: 366PubMedCrossRefGoogle Scholar
  29. 29.
    Loeschcke HH (1982) Central chemosensitivity and reaction theory. J Physiol 332: 1–24PubMedGoogle Scholar
  30. 30.
    Loeschcke HH, Koepchen HP (1958) Versuch zur Lokalisation des Angriffsortes der Atmungs-und Kreislaufwirkung von Novocain im Liquour cerebrospinalis. Pflugers Arch 266: 628–641PubMedCrossRefGoogle Scholar
  31. 31.
    Magoun HW (1950) Caudal and cephalic influences of the brain stein reticular formation. Physiol Rev 30: 459–474PubMedGoogle Scholar
  32. 32.
    Malliani A, Lombardi F, Pagani M, Cerutti S (1986) The problem of approaching the sympathetic and vagal “tone”. J Auton Nerv Syst, Suppl. pp. 191–196Google Scholar
  33. 33.
    Mancia G, Ferrari A, Gregorini L, Parati G, Pomidossi G, Bertinieri G, Grassi G et al. (1983) Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res 33: 96–104Google Scholar
  34. 34.
    Mittelstaedt H (ed) (1954) Regelungsvorgänge in der Biologie. Oldenbourg, DarmstadtGoogle Scholar
  35. 35.
    Richter DW (1982) Generation and maintenance of respiratory rhythm. J Exp Biol 100: 93–107PubMedGoogle Scholar
  36. 36.
    Schlaefke ME (1981) Central chemosensitivity: a respiratory drive. Rev Physiol Biochem Pharmacol 90: 171–244PubMedCrossRefGoogle Scholar
  37. 37.
    Schlomka G, Reindell H (1936) Untersuchungen über die physiologische Unregelmäßigkeit des Herzschlages. Z Kreislaufforsch 28: 473–492Google Scholar
  38. 38.
    Seller H, Langhorst P, Polster J, Koepchen HP (1967) Zeitliche Eigenschaften der Vasomotorik. II. Erscheinungsformen und Entstehung spontaner und nervös induzierter Gefäßrhythmen. Pflugers Arch 296: 110–132Google Scholar
  39. 39.
    Wagner R (1954) Beispiele und Probleme biologischer Regelung. Thieme, StuttgartGoogle Scholar
  40. 40.
    Weigelt H, Lübbers DW (1984) The fine adjustment of capillary blood flow through excitation of the capillary wall. In: Lübbers DW, Acker H, Leniger-Follert E, Goldstick TK (eds) Oxygen transport to tissue V. Plenum, New York, pp 731–737Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • H. P. Koepchen
  • H.-H. Abel
  • D. Klüssendorf

There are no affiliations available

Personalised recommendations