Skip to main content
Book cover

Insulin pp 169–181Cite as

Insulin Receptor Structure

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 92))

Abstract

The insulin receptor serves to not only concentrate insulin on the appropriate target cells, but also to initiate the responses of these cells to the hormone. Consequently, a great deal of research has been focused on this molecule. Early efforts were directed at quantitating the interaction of radioactively labeled insulin with its receptor (for reviews of these studies see GAMMELTOFT 1984; ROTH and GRUNFELD 1981 ; KAHN 1976). From these studies it was possible to

  1. 1

    Estimate the number of insulin receptors on different cells under various physiological conditions;

  2. 2

    Show that the interaction of insulin with its receptor results in a subsequent decrease in the number of cell surface receptors (the phenomenon called “downregulation”);

  3. 3

    Show that the interaction of insulin with its receptors is not a simple one since Scatchard plots of binding data were curvilinear, a phenomenon which has been interpreted to mean that insulin was interacting with two populations of receptors or that there was one class of receptors which exhibits negative cooperativity;

  4. 4

    Show that the rank order of potency of different insulin analogs varies in their binding to insulin receptors in different tissues, suggesting that the insulin receptor might differ in these tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blackshear PJ, Nemenoff RA, Avruch J (1983) Insulin binds to and promotes the phosphorylation of a Mr 210000 component of its receptor in detergent extracts of rat liver microsomes. FEBS Lett 158:243–246

    Article  PubMed  CAS  Google Scholar 

  • Bodsch W, Wedekind F, Sommer M-T, Brandenburg D (1988) On the insulin binding domain of the human insulin receptor. In: International symposium on insulin and the cell membrane, Slovak Academy of Sciences, Bratislava, Czechoslovakia, 27–30 June 1988

    Google Scholar 

  • Böni-Schnetzler M, Scott W, Waugh SM, DiBella E, Pilch PF (1987) The insulin receptor: structural basis for high affinity ligand binding. J Biol Chem 262:8395–8401

    PubMed  Google Scholar 

  • Böni-Schnetzler M, Kaligian A, DelVecchio R, Pilch PF (1988) Ligand-dependent inter-subunit association within the insulin receptor complex activates its intrinsic kinase activity. J Biol Chem 263:6822–6828

    PubMed  Google Scholar 

  • Burant CF, Treutelaar MK, Allen KD, Sens DA, Buse MG (1987) Comparison of insulin and insulin-like growth factor I receptors from rat skeletal muscle and L-6 myocytes. Biochem Biophys Res Commun 147:100–107

    Article  PubMed  CAS  Google Scholar 

  • Caro JF, Raju SM, Sinha MK, Goldfme ID, Dohm GL (1988) Heterogeneity of human liver, muscle, and adipose tissue insulin receptor. Biochem Biophys Res Commun 15:123–129

    Article  Google Scholar 

  • Chou CK, Dull TJ, Russell DS, Gherzi R, Lebwohl D, Ullrich A, Rosen OM (1987) Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem 262:1842–1847

    PubMed  CAS  Google Scholar 

  • Czech MP, Massague J (1982) Subunit structure and dynamics of the insulin receptor. Fed Proc 41:2719–2723

    PubMed  CAS  Google Scholar 

  • Deger A, Krämer H, Rapp R, Koch R, Weber U (1986) The nonclassical insulin binding of insulin receptors from rat liver is due to the presence of two interacting a-subunits in the receptor complex. Biochem Biophys Res Commun 135:458–464

    Article  PubMed  CAS  Google Scholar 

  • Donner DB, Yonkers K (1983) Hormone-induced conformational changes in the hepatic insulin receptor. J Biol Chem 258:9413–9418

    PubMed  CAS  Google Scholar 

  • Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou J-h, Masiarz F, Kan YW, Goldfme ID, Roth RA, Rutter WJ (1985) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40:747–758

    Article  PubMed  CAS  Google Scholar 

  • Ebina Y, Araki E, Taira M, Shimada F, Mori M, Craik CS, Siddle K, Pierce SB, Roth RA, Rutter WJ (1987) Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin-and antibody-stimulated glucose uptake and receptor Okinase activity. Proc Natl Acad Sci USA 84:704–708

    Article  PubMed  CAS  Google Scholar 

  • Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ (1986a) Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxy glucose. Cell 45:721–732

    Article  PubMed  CAS  Google Scholar 

  • Ellis L, Morgan DO, Clauser E, Edery M, Jong S-M, Wang L-H, Roth RA, Rutter WJ (1986b) Mechanisms of receptor-mediated transmembrane communication. In: Cold Spring Harbor Symp Quant Biol 51:773

    PubMed  CAS  Google Scholar 

  • Ellis L, Morgan DO, Clauser E, Roth RA, Rutter WJ (1987a) A membrane-anchored cytoplasmic domain of the human insulin receptor mediates a constitutively elevated insulin-independent uptake of 2-deoxy glucose. Mol Endocrinol 1:15–24

    Article  PubMed  CAS  Google Scholar 

  • Ellis L, Morgan DO, Jong S-M, Wang L-H, Roth RA, Rutter WJ (1987b) Heterologous transmembrane signaling by a human insulin receptor-v-roshybrid in Chinese hamster ovary cells. Proc Natl Acad Sci USA 84:5101–5105

    Article  PubMed  CAS  Google Scholar 

  • Ellis L, Levitan A, Cobb MH, Ramos P (1988a) Efficient expression in insect cells of a soluble, active human insulin receptor protein-tyrosine kinase domain by use of a baculovirus vector. J Virol 62:1634–1639

    PubMed  CAS  Google Scholar 

  • Ellis L, Sissom J, Levitan A (1988b) Truncation of the ectodomain of the human insulin receptor results in secretion of a soluble insulin binding protein from transfected CHO cells. J Mol Recognition 1:25–31

    Article  CAS  Google Scholar 

  • Fernandez-Almonacid R, Rosen OM (1987) Structure and ligand specificity of the Drosophila melanogasterinsulin receptor. Mol Cell Biol 7:2718–2727

    PubMed  CAS  Google Scholar 

  • Gammeltoft S (1984) Insulin receptors: binding kinetics and structure-function relationship of insulin. Physiol Rev 64:1321–1378

    PubMed  CAS  Google Scholar 

  • Goldstein BJ, Müller-Wieland D, Kahn CR (1987) Variation in insulin receptor messenger ribonucleic acid expression in human and rodent tissues. Mol Endocrinol 1:759–766

    Article  PubMed  CAS  Google Scholar 

  • Grunfeld C, Shigenaga JK, Ramachandran J (1985) Urea treatment allows dithiothreitol to release the binding subunit of the insulin receptor from the cell membrane: implications for the structural organization of the insulin receptor. Biochem Biophys Res Commun 133:389–396

    Article  PubMed  CAS  Google Scholar 

  • Gu J-L, Goldfme ID, Forsayeth JR, De Meyts P (1988) Reversal of insulin-induced negative cooperativity by monoclonal antibodies that stabilize the slowly dissociating state of the insulin receptor. Biochem Biophys Res Commun 150:694–701

    Article  PubMed  CAS  Google Scholar 

  • Hedo JA, Simpson IA (1984) Internalization of insulin receptors in the isolated rat adipose cell. J Biol Chem 259:11083–11089

    PubMed  CAS  Google Scholar 

  • Hedo JA, Kahn CR, Hayashi M, Yamada KM, Kasuga M (1983) Biosynthesis and glycosylation of the insulin receptor. J Biol Chem 258:10020–10026

    PubMed  CAS  Google Scholar 

  • Heidenreich KA, Zahniser NR, Berhanu P, Brandenburg D, Olefsky JM (1983) Structural differences between insulin receptors in the brain and peripheral target tissues. J Biol Chem 258:8527–8530

    PubMed  CAS  Google Scholar 

  • Hendricks SA, Agardh C-D, Taylor SI, Roth J (1984) Unique features of the insulin receptor in rat brain. J Neurochem 43:1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Herrera R, Rosen OM (1986) Autophosphorylation of the insulin receptor in vitro. J Biol Chem 261:11980–11985

    PubMed  CAS  Google Scholar 

  • Herrera R, Lebwohl D, de Herreros AG, Kallen RG, Rosen OM (1988) Synthesis, purification, and characterization of the cytoplasmic domain of the human insulin receptor using a baculovirus expression system. J Biol Chem 263:5560–5568

    PubMed  CAS  Google Scholar 

  • Herzberg VL, Grigorescu F, Edge ASB, Spiro RG, Kahn CR (1985) Characterization of insulin receptor carbohydrate by comparison of chemical and enzymatic deglycosyla-tion. Biochem Biophys Res Commun 129:789–796

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S, Cuatrecasas P (1980) Disulfide reduction converts the insulin receptor of human placenta to a low affinity form. J Clin Invest 66:1424–1427

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S, Cuatrecasas P (1981) Insulin receptor: structure and function. Endocr Rev 2:251–263

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S, Hazum E, Schechter Y, Cuatrecasas P (1979) Insulin receptor: covalent labeling and identification of subunits. Proc Natl Acad Sci USA 76:4918–4921

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S, Kuli FC Jr, Cuatrecasas P (1983) Monensin blocks the maturation of receptors for insulin and somatomedin C: identification of receptor precursors. Proc Natl Acad Sci USA 80:1228–1231

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD, Wong ML, Rutter WJ (1989) Properties of the insulin receptor ectodomain. Proc Natl Acad Sci (USA) 85:7516–7520

    Article  Google Scholar 

  • Jonas HA, Newman JD, Harrison LC (1986) An atypical insulin receptor with high affinity for insulin-like growth factors copurified with placental insulin receptors. Proc Natl Acad Sci USA 83:4124–4128

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Koyasu S, Nishida E, Tobe K, Izumi T, Takaku F, Sakai H, Yahara I, Kasuga M (1987) Tyrosine phosphorylation of common and specific sets of cellular proteins rapidly induced by insulin, insulin-like growth factor I, and epidermal growth factor in an intact cell. J Biol Chem 262:7342–7350

    PubMed  CAS  Google Scholar 

  • Kadowaki T, Bevins CL, Cama A, Ojamaa K, Marcus-Samuels B, Kadowaki H, Beitz L, McKeon C, Taylor SI (1988) Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance. Science 240:787–790

    Article  PubMed  CAS  Google Scholar 

  • Kahn CR (1976) Membrane receptors for hormones and neurotransmitters. J Cell Biol 70:261–286

    Article  PubMed  CAS  Google Scholar 

  • Kahn CR, Maron R (1984) Immunology of the insulin receptor. In: Andreani D, Di Mario U, Federlin KF, Heding LG (eds) Immunology in diabetes. Kimpton Medical, London, p 209

    Google Scholar 

  • Kasuga M, Karlsson FA, Kahn CR (1982a) Insulin stimulates the phosphorylation of the 95000-dalton subunit of its own receptor. Science 215:185–186

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Zick Y, Blithe DL, Crettaz M, Kahn CR (1982b) Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature 298:667–669

    Article  PubMed  CAS  Google Scholar 

  • Lewis RE, Tepper MA, Czech MP (1986) Characterization of a genomic clone encoding the rat insulin receptor cytoplasmic domain. In: Program and abstracts, 68th annual Meeting of the Endocrine Society, Anaheim, California, 25-27 June 1986

    Google Scholar 

  • Maegawa H, McClain DA, Freidenberg G, Olefsky JM, Napier M, Lipari T, Dull TJ, Lee J, Ullrich A (1988) Properties of a human insulin receptor with a COOH-terminal truncation. J Biol Chem 263:8912–8917

    PubMed  CAS  Google Scholar 

  • Matsushime H, Wang L-H, Shibuya M (1986) Human c-ros-1 gene homologous to the v-rossequence of UR2 sarcoma virus encodes for a transmembrane receptor-like molecule. Mol Cell Biol 6:3000–3004

    PubMed  CAS  Google Scholar 

  • McClain DA, Maegawa H, Lee J, Dull TJ, Ulrich A, Olefsky JM (1987) A mutant insulin receptor with defective tyrosine kinase displays no biologic activity and does not undergo endocytosis. J Biol Chem 262:14663–14671

    PubMed  CAS  Google Scholar 

  • McElduff A, Grunberger G, Gorden P (1985) An alteration in apparent molecular weight of the insulin receptor from the human monocyte cell line U-937. Diabetes 34:686–690

    Article  PubMed  CAS  Google Scholar 

  • Morgan DO, Roth RA (1986) Mapping surface structures of the human insulin receptor with monoclonal antibodies: localization of main immunogenic regions to the receptor kinase domain. Biochem 25:1364–1371

    Article  CAS  Google Scholar 

  • Nishida Y, Hata M, Nishizuka Y, Rutter WJ, Ebina Y (1986) Cloning of a DrosophilacDNA encoding a polypeptide similar to the human insulin receptor precursor. Biochem Biophys Res Commun 141: 474–481

    Article  PubMed  CAS  Google Scholar 

  • Olson TS, Bamberger MJ, Lane MD (1986) Post-translational changes in tertiary and quaternary structure of the insulin proreceptor. J Biol Chem 263:7342–7351

    Google Scholar 

  • Petruzzelli L, Herrera R, Arenas-Garcia R, Fernandez R, Birnbaum MJ, Rosen OM (1986) Isolation of a Drosophilagenomic sequence homologous to the kinase domain of the human insulin receptor and detection of the phosphorylated Drosophilareceptor with an anti-peptide antibody. Proc Natl Acad Sci USA 83:4710–4714

    Article  PubMed  CAS  Google Scholar 

  • Pilch PF, Czech MP (1979) Interaction of cross-linking agents with the insulin effector system of isolated fat cells. J Biol Chem 254:3375–3380

    PubMed  CAS  Google Scholar 

  • Pilch PF, Czech MP (1980) Hormone binding alters the conformation of the insulin receptor. Science 210:1152–1153

    Article  PubMed  CAS  Google Scholar 

  • Pottick LA, Moxley RT III, Livingston JN (1981) Tissue differences in insulin receptors: acute changes in insulin binding characteristics induced by wheat germ agglutinin. Diabetes 30:196–202

    PubMed  CAS  Google Scholar 

  • Rees-Jones RW, Hedo JA, Zick Y, Roth J (1983) Insulin-stimulated phosphorylation of the insulin receptor precursor. Biochem Biophys Res Commun 116:417–422

    Article  PubMed  CAS  Google Scholar 

  • Rosen OM (1987) After insulin binds. Science 237:1452–1457

    Article  PubMed  CAS  Google Scholar 

  • Roth RA, Cassell DJ (1983) Insulin receptor: evidence that it is a protein kinase. Science 219:299–301

    Article  PubMed  CAS  Google Scholar 

  • Roth J, Grunfeld C (1981) Endocrine systems: mechanisms of disease, target cells, and receptors. In: Williams RH (ed) Textbook of endocrinology. Saunders, Philadelphia, p 15, chap 2

    Google Scholar 

  • Roth RA, Mesirow ML, Cassell DJ (1983) Preferential degradation of the ß subunit of purified insulin receptor. J Biol Chem 258:14456–14460

    PubMed  CAS  Google Scholar 

  • Roth RA, Morgan DO, Beaudoin J, Sara V (1986) Purification and characterization of the human brain insulin receptor. J Biol Chem 261:3753–3757

    PubMed  CAS  Google Scholar 

  • Schweitzer JB, Smith RM, Jarett L (1980) Differences in organizational structure of insulin receptor on rat adipocyte and liver plasma membranes: role of disulfide bonds. Proc Natl Acad Sci USA 77:4692–4696

    Article  PubMed  CAS  Google Scholar 

  • Shia MA, Pilch PF (1983) The ß subunit of the insulin receptor is an insulin-activated protein kinase. Biochem 22:717–721

    Article  CAS  Google Scholar 

  • Shia MA, Rubin JB, Pilch PF (1983) The insulin receptor protein kinase. J Biol Chem 258:14450–14455

    PubMed  CAS  Google Scholar 

  • Shoelson SE, White MF, Kahn CR (1988) Tryptic activation of the insulin receptor. J Biol Chem 263:4852–4860

    PubMed  CAS  Google Scholar 

  • Steele-Perkins G, Turner J, Edman JC, Hari J, Pierce SB, Stover C, Rutter WJ, Roth RA (1988) Expression and characterization of a functional human insulin-like growth factor I receptor. J Biol Chem 263:11486–11492

    PubMed  CAS  Google Scholar 

  • Stuart CA (1988) Characterization of a novel insulin receptor from stingray liver. J Biol Chem 263:7881–7886

    PubMed  CAS  Google Scholar 

  • Sweet LJ, Morrison BD, Pessin JE (1987) Isolation of functional αß heterodimers from the purified human placental α2ß2 heterotetrameric insulin receptor complex. J Biol Chem 262:6939–6942

    PubMed  CAS  Google Scholar 

  • Tornqvist HE, Gunsalus JR, Nemenoff RA, Frackelton AR, Pierce MW, Avruch J (1988) Identification of the insulin receptor tyrosine residues undergoing insulin-stimulated phosphorylation in intact rat hepatoma cells. J Biol Chem 263:350–359

    PubMed  CAS  Google Scholar 

  • Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao Y-C, Tsubokawa M, Mason A, Seeburg PH, Grundfeld C, Rosen OM, Ramachandran J (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Gray A, Tarn AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512

    PubMed  CAS  Google Scholar 

  • van Obberghen EB, Rossi A, Kowalski A, Gazzano H (1983) Receptor-mediated phosphorylation of the hepatic insulin receptor; evidence that the M r 95000 receptor subunit is its own kinase. Proc Natl Acad Sci USA 80:945–949

    Article  PubMed  Google Scholar 

  • Whitaker J, Okamoto A (1988) Secretion of soluble functional insulin receptors by trans-fected NIH3T3 cells. J Biol Chem 263:3063–3066

    Google Scholar 

  • White MF, Shoelson SE, Keutmann H, Kahn CR (1988) A cascade of tyrosine autophosphorylation in the ß-subunit activates the phosphotransferase of the insulin receptor. J Biol Chem 263:2969–2980

    PubMed  CAS  Google Scholar 

  • Yarden Y, Ullrich A (1988) Growth factor receptor tyrosine kinases. Ann Rev Biochem 57:443–78

    Article  PubMed  CAS  Google Scholar 

  • Yip CC, Moule ML, Yeung CWT (1980) Characterization of insulin receptor subunits in brain and other tissues by photoaffinity labeling. Biochem Biophys Res Commun 96:1671–1678

    Article  PubMed  CAS  Google Scholar 

  • Yoshimasa Y, Seino S, Whittaker J, Kakehi T, Kosaki A, Kuzuya H, Imura H, Bell GI, Steiner DF (1988) Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. Science 240:784–787

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roth, R.A. (1990). Insulin Receptor Structure. In: Cuatrecasas, P., Jacobs, S. (eds) Insulin. Handbook of Experimental Pharmacology, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74098-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74098-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74100-5

  • Online ISBN: 978-3-642-74098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics