Skip to main content

Second Messengers of Insulin Action

  • Chapter
Insulin

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 92))

  • 380 Accesses

Abstract

Despite significant advances in the past few years on the chemistry and biology of insulin and its receptor, the molecular events that couple the insulin-receptor interaction to the regulation of cellular metabolism remain uncertain. Progress in this area has been complicated by the pleiotropic nature of insulin’s actions. These most likely involve a complex network of pathways resulting in the coordination of mechanistically distinct cellular effects. Since the well-recognized mechanism of signal transduction (i.e., cyclic nucleotides, ion channels) appear not to be central to insulin action, investigators have searched for a novel second messenger system. A low molecular weight substance has been identified that mimics certain actions of insulin on metabolic enzymes. This substance has an inositol glycan structure, and is produced by the insulin-sensitive hydrolysis of a glycosylphosphatidylinositol (glycosyl-PI) in the plasma membrane. This hydrolysis reaction, which is catalyzed by a specific phospholipase C, also results in the production of a structurally distinct diacylglycerol, that may selectively regulate one or more of the protein kinases C. The glycosyl-PI precursor for the inositol glycan enzyme modulator is structurally analogous to the recently described glycosyl-PI membrane protein anchor. Preliminary studies suggest that a subset of proteins anchored in this fashion might be released from cells by a similar insulin-sensitive, phospholipase-catalyzed reaction. Future efforts will focus on the precise role of the metabolism of glycosyl-PI in insulin action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad Z, Lee F-T, DePaoli-Roach A, Roach PJ (1984) Phosphorylation of glycogen synthase by the Ca2+ and phospholipid-activated protein kinase (protein kinase C). J Biol Chem 259:8743–8747

    PubMed  CAS  Google Scholar 

  • Alemany S, Mato JM, Stralfors P (1987) Phosphodephospho control by insulin is mimicked by a phospho-oligosaccharide in adipocytes. Nature 330:77–79]

    PubMed  CAS  Google Scholar 

  • Alexander MC, Kowaloff EM, Witters LA, Dennihy DT, Avruch J (1979) Purification of a hepatic 120000-dalton hormone stimulated 32P peptide and its identification as ATP-citrate lyase. J Biol Chem 254:8052–8056

    PubMed  CAS  Google Scholar 

  • Alvarez JF, Cabello MA, Feliu JE, Mato JM (1987) A phospho-oligosaccharide mimics insulin action on glycogen phosphorylase and pyruvate kinase activities in isolated rat hepatocytes. Biochem Biophys Res Commun 147:765–771

    CAS  Google Scholar 

  • Alvarez JF, Varela I, Ruiz-Albusac JM, Mato JM (1988) Localisation of the insulinsensitive phosphatidylinositol glycan at the outer surface of the cell membrane. Biochem Biophys Res Commun 152:1455–1462

    PubMed  CAS  Google Scholar 

  • Avruch J, Alexander MC, Palmer JL, Pierce MW, Nemenoff RA, Blackshear PJ, Tipper JP, Witters LA (1982) Role of insulin-stimulated protein phosphorylation in insulin action. Fed Proc 41:2629–2633

    PubMed  CAS  Google Scholar 

  • Blundell TL, Dodson GG, Hodgkin DC, Mercola DA (1972) Insulin: the structure in the crystal and its reflection in chemistry. Adv Protein Chem 26:279–402

    CAS  Google Scholar 

  • Brownsey RW, Denton RM (1982) Evidence that insulin activates fat cell acetyl CoA car-boxylase by increased phosphorylation at a specific site. Biochem J 202:77–86

    PubMed  CAS  Google Scholar 

  • Butcher RW, Sneyd JGT, Park CR, Sutherland EW (1966) Effect of insulin on adenosine 3′, 5′-monophosphate in rat epididymal fat pad. J Biol Chem 241:1651–1653

    PubMed  CAS  Google Scholar 

  • Cahill GF Jr (1971) Physiology of insulin in man. Diabetes 20:785–797

    PubMed  CAS  Google Scholar 

  • Chan BL, Lisanti MR, Rodriguez-Boulan E, Saltiel AR (1988) Insulin-stimulated release of lipoprotein lipase by metabolism of its PI anchor. Science 241:1670–1672

    PubMed  CAS  Google Scholar 

  • Chergui G, Caron M, Wicek D, Lascols O, Capeau J, Picard J (1987) Decreased insulin responsiveness in fat cells rendered protein kinase C-deflcient by a treatment with a phorbolester. Endocrinology 120:2192–2194

    Google Scholar 

  • Chou CD, Cull TJ, Russel OS, Cherzi R, Lebwohl D, Ullrich A, Rosen OM (1987) Human insulin receptors mutated at the ATP binding site lack protein kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem 262:1842–1847

    PubMed  CAS  Google Scholar 

  • Claus TH, El-Maghrabi MR, Pilkis SJ (1979) Modulation of the phosphorylation state of rat liver pyruvate kinase by allosteric effectors and insulin. J Biol Chem 254:7855–7862

    PubMed  CAS  Google Scholar 

  • Clausen T (1975) Effect of insulin on glucose transport in muscle cells. Curr Top Membr Transp 6:169–226

    CAS  Google Scholar 

  • Cooper DR, Konda TS, Standaert ML, Davis JS, Pollet RJ, Farese RV (1987) Insulin increases membrane and cytosolic protein kinase C activity in BC3H-1 myocytes. J Biol Chem 262:3633–3639

    PubMed  CAS  Google Scholar 

  • Coore HG, Denton RM, Martin BR, Randle PJ (1971) Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochemistry 125:115–127

    CAS  Google Scholar 

  • Coussens L, Parker P, Chee L, Yang-Feng TL, Chem E, Waterfield MD, Francke V, Ullrich A (1986) Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signalling pathways. Science 233:859–866

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P (1971) Insulin-receptor interactions in adipose tissue cells: direct measurement and properties. Proc Natl Acad Sci USA 68:1264–1268

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P (1972a) Affinity chromatography and purification of the insulin receptor of liver cell membranes. Proc Natl Acad Sci USA 69:1277–1281

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P (1972b) Isolation of the insulin receptor of liver and fat cell membranes. Proc Natl Acad Sci USA 69:318–322

    Google Scholar 

  • Czech MP (1977) Molecular basis of insulin action. Annu Rev Biochem 46:359–384

    PubMed  CAS  Google Scholar 

  • Czech MP (1985) The nature and regulation of the insulin receptor: structure and function. Annu Rev Physiol 47:357–381

    PubMed  CAS  Google Scholar 

  • Davitz MA, Herald D, Shek S, Krakow J, Englund PT, Nussenzweig V (1987) A glycanphosphatidylinositol-specific phospholipase D in human serum. Science 238:81–84

    PubMed  CAS  Google Scholar 

  • Denton RM (1986) Early events in insulin actions. Adv Cyclic Nucleotide Protein Phosphorylation Res 26:293–341

    Google Scholar 

  • Deshpande AK, Kung H-F (1987) Insulin induction of Xenopus laevisoocyte maturation is inhibited by monoclonal antibody against p21 rasproteins. Mol Cell Biol 1:1285–1288

    Google Scholar 

  • Detorrontegui G, Berthet J (1966) The action of insulin on the incorporation of [32P] phosphate in the phospholipids of rat adipose tissue. Biochim Biophys Acta 116:477–481

    CAS  Google Scholar 

  • Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ouj JH et al. (1985) The human insulin receptor cDNA: the structural basis for hormone activated transmembrane signalling. Cell 259:11083–11092

    Google Scholar 

  • Elks ML, Jackson M, Manganiello CVC, Vaughan M (1987) Effect of NG-(2, 2-phenylisopropyl)adenosine and insulin on cAMP metabolism in 3T3-L1 adipocytes. Am J Physiol 252:C342–C348

    PubMed  CAS  Google Scholar 

  • Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ (1986) Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell 45:721–729

    PubMed  CAS  Google Scholar 

  • Fain JN (1974) Mode of insulin action. In: Richenberg HV (ed) Biochemistry of hormones, vol 8. MTP Press, Lancaster, pp 1–23(MTP International review of science biochemistry, ser 1)

    Google Scholar 

  • Fain JN, Rosenberg L (1972) Antilipolytic action of insulin on fat cells. Diabetes 21:414–425

    PubMed  CAS  Google Scholar 

  • Farese RV, Standaert ML, Barnes DE, David JS, Pollet RJ (1985a) Phorbol ester provokes insulin-like effects on glucose transport, ammo acid uptake and pyruvate dehydrogenase activity in BC3H1 cultured myocytes. Endocrinology 116:2650–2653

    PubMed  CAS  Google Scholar 

  • Farese RV, Davis JT, Barnes DE, Standaert ML, Bebishkin JS, Hock R, Rosie NK, Pollet RJ (1985b) The de novo phospholipid effect of insulin is associated with increases in diacylglycerol, but not inositol phosphates or cytosolic Ca. Biochem J 231:269–278

    PubMed  CAS  Google Scholar 

  • Farese RV, Konda TS, David JS, Standaert ML, Pollet RJ, Cooper DR (1987) Insulin rapidly increases diacylglycerol by activating de novo phosphatidic acid synthesis. Science 238:586–589

    Google Scholar 

  • Farese RV, Cooper DR, Kanda TS, Nair GP, Standaert ML, Pollet RJ (1989) Insulin provokes coordinated increases in the synthesis of phosphatidylinositol, phosphatidylinositol-phosphates and the phosphatidylinositol-glycan in BC3H1 myocytes. Biochem J (in press)

    Google Scholar 

  • Forsayeth JR, Caro JF, Sinha MK, Maddux BA, Goldfme ID (1987) Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity. Proc Natl Acad Sci USA 84:3448–3453

    PubMed  CAS  Google Scholar 

  • Fox JA, Soliz NM, Saltiel AR (1987) Purification of a phosphatidylinositol-glycan specific phospholipase C from liver plasma membranes: a possible target of insulin action. Proc Natl Acad Sci USA 84:2663–2667

    PubMed  CAS  Google Scholar 

  • Freychet P, Roth J, Neville DM Jr (1971) Insulin receptors in the liver: specific binding of [125I]insulin into the plasma membrane and its relationship to insulin bioactivity. Proc Natl Acad Sci USA 68:1833–1837

    PubMed  CAS  Google Scholar 

  • Gaulton GN, Kelly KL, Pawlowski J, Mato JM, Jarett L (1988) Regulation and function of an insulin-sensitive glycosyl-phosphatidylinositol during T lymphocyte activation. Cell 538:963–970

    Google Scholar 

  • Gibbs EM, Allard WJ, Lienhard GE (1986) The glucose transporter in 3T3-L1 adipocytes is phosphorylated in response to phorbol ester but not in response to insulin. J Biol Chem 261:16597–16603

    PubMed  CAS  Google Scholar 

  • Glynn BP, Calliton JW, McDermott JM, Witters LA (1986) Phorbol esters, but not insulin, promote depletion of cytosolic protein kinase C in rat adipocytes. Biochem Biophys Res Commun 135:1119–1125

    PubMed  CAS  Google Scholar 

  • Goldfme ID (1987) The insulin receptor: molecular biology and transmembrane signalling. Endocr Rev 8:235–255

    Google Scholar 

  • Goren JJ, Northrup JK, Hollenberg MD (1985) Action of insulin modulated by pertussis toxin in rat adipocytes. Can J Physiol Pharmacol 63:1017–1022

    PubMed  CAS  Google Scholar 

  • Gottschalk WK, Jarett L (1988) The insulinomimetic effect of the polar head group of an insulin-sensitive glycophospholipid on pyruvate dehydrogenase in both subcellular and whole cell assays. Arch Biochem Biophys 261:175–185

    PubMed  CAS  Google Scholar 

  • Graves CB, McDonald JM (1985) Insulin and phorbol ester stimulated phosphorylation of a 40 kDa protein in adipocyte plasma membranes. J Biol Chem 260:11286–11292

    PubMed  CAS  Google Scholar 

  • Graves CB, Gale RD, Laurino JP, McDonald JM (1986) The insulin receptor and cal-modulin.J Biol Chem 261:10429–10438

    PubMed  CAS  Google Scholar 

  • Hirschberg CB, Snider MD (1987) Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 56:63–87

    PubMed  CAS  Google Scholar 

  • Honeyman TW, Strohsnitter W, Scheiel CR, Schimmel J (1983) Phosphatidic acid and phosphatidylinositol labeling in adipose tissue. Biochem J 212:489–498

    PubMed  CAS  Google Scholar 

  • Huang K-P, Nakabayashi H, Huang FL (1986) Isozymic forms of rat brain C2+-activated and phospholipid-dependent protein kinase. Proc Natl Acad Sci USA 83:8535–8539

    PubMed  CAS  Google Scholar 

  • Igareshi Y, Chambaz EM (1987) A novel inositol glycophospholipid (IGPC) and the serum dependence on its metabolism in bovine adrenocortical cells. Biochem Biophys Res Commun 145:249–256

    Google Scholar 

  • Ishihara M, Fedarko NS, Conrad HE (1987) Involvement of phosphatidylinositol and insulin in the coordinate regulation of proteoheparan sulfate metabolism and hepatocyte growth. J Biol Chem 262:4708–4716

    PubMed  CAS  Google Scholar 

  • Jacobs S, Cuatrecasas P (1983) Insulin receptors. Annu Rev Pharmacol Toxicol 23:461–479

    PubMed  CAS  Google Scholar 

  • Jacobs S, Shechter Y, Bissell K, Cuatrecasas P (1977) Purification and properties of insulin receptors from rat liver membranes. Biochem Biophys Res Commun 77:981–988

    PubMed  CAS  Google Scholar 

  • Jamil H, Madsen NB (1987) Phosphorylation state of acetyl CoA carboxylase. J Biol Chem 262:638–642

    PubMed  CAS  Google Scholar 

  • Jarett L, Kiechle PL (1984) Intracellular mediators of insulin action. Vitam Horm 41:51–78

    PubMed  CAS  Google Scholar 

  • Joost HG, Weber TM, Cushman SW, Simpson IA (1987) Activity and phosphorylation state of glucose transporters in plasma membranes from insulin-, isoproterenol-and phorbol ester-treated rat adipose cells. J Biol Chem 262:11262–11267

    Google Scholar 

  • Jungas RL (1971) Hormonal regulation of pyruvate dehydrogenase. Metabolism 20:43–53

    PubMed  CAS  Google Scholar 

  • Kahn CR, Baird KL, Flier JS, Grunfeld C, Harmon JT, Harrison LC, Karlsson FA et al. (1981) Insulin receptors, receptor antibodies, and the mechanism of insulin action. Recent Prog Horm Action 37:477–537

    CAS  Google Scholar 

  • Kamata T, Kathuria S, Fujita-Yamaguchi Y (1987) Insulin stimulates the phosphorylation level of v-Ha-ras protein in membrane fraction. Biochem Biophys Res Commun 144:19–25

    PubMed  CAS  Google Scholar 

  • Kasuga M, Karlsson FA, Kahn CR (1982) Insulin stimulates the phosphorylation of the 95 000 dalton subunit of its own receptor. Science 215:185–187

    PubMed  CAS  Google Scholar 

  • Kelly KL, Mato JM, Jarett L (1986) The polar head group of a novel insulin-sensitive glycophospholipid mimics insulin action on phospholipid methyltransferase. FEBS Lett 209:238–242

    PubMed  CAS  Google Scholar 

  • Kelly KL, Merida I, Wong EHA, DiCenzo D, Mato JM (1987a) A phospho-oligosaccharide mimics the effect of insulin to inhibit isoproterenol-dependent phosphorylation of phospholipid methyltransferase in isolated adipocytes. J Biol Chem 262:15285–15290

    PubMed  CAS  Google Scholar 

  • Kelly KL, Mato JM, Merida I, Jarett L (1987b) Glucose transport and antilipolysis are differentially regulated by the polar head group of an insulin sensitive glycophospholipid. Proc Natl Acad Sci USA 84:6404–6407

    PubMed  CAS  Google Scholar 

  • Kennelly PJ, Rodwell VW (1985) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by reversible phosphorylation-dephosphorylation. J Lipid Res 26:903–914

    PubMed  CAS  Google Scholar 

  • Kiechle FL, Jarett L, Kotagal N, Popp DA (1980) Isolation from rat adipocytes of a chemical mediator for insulin activation of pyruvate dehydrogenase. Diabetes 29:852–855

    PubMed  CAS  Google Scholar 

  • Klip A, Ramlal T (1987) Protein kinase C is not required for insulin stimulation of hexose uptake in muscle cells in culture. Biochem J 242:131–136

    PubMed  CAS  Google Scholar 

  • Klip A, Li G, Logan WJ (1984) Role of calcium ions in insulin action on hexose transport in L6 muscle cells. Am J Physiol247:E297–E304

    Google Scholar 

  • Knopf JL, Lee M-H, Sultzman LA, Kriz RW, Loomis CR, Hewick RM, Bell RM (1986) Cloning and expression of multiple protein kinase C cDNAs. Cell 46:491–502

    PubMed  CAS  Google Scholar 

  • Korn LJ, Siebel CW, McCormick F, Roth RA (1987) Rasp21 as a potential mediator of insulin action in Xenopusoocytes. Science 236:840–843

    Google Scholar 

  • Krakower GR, Kim K-H (1981) Purification and properties of acetyl CoA carboxylase phosphatase. J Biol Chem 256:2408–2413

    PubMed  CAS  Google Scholar 

  • Larner J (1971) Insulin and glycogen synthase. Diabetes 21:428–432

    Google Scholar 

  • Laraer J, Galasko G, Cheng K, DePaoli-Roach AA, Huang L, Daggy P, Kellog J (1979) Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation. Science 206:1408–1410

    Google Scholar 

  • Levine R (1982) Insulin: the effects and mode of action of the hormone. Vitam Horm 39:145–173

    PubMed  CAS  Google Scholar 

  • Levy JR, Murray E, Manolagas S, Olefsky JM (1986) Demonstration of insulin receptors and modulation of alkaline phosphatase activity by insulin in rat osteoblastic cells. Endocrinology 119:1786–1792

    PubMed  CAS  Google Scholar 

  • Low MG, Finean JB (1977) Release of alkaline phosphatase from membranes by a phosphatidyhnositol-spedfic phospholipase C. Biochem J 167:281–284

    PubMed  CAS  Google Scholar 

  • Low MG, Prasad ARS (1988) A phospholipase D specific for the phosphatidylinositol anchor of cell surface proteins is abundant in plasma. Proc Natl Acad Sci USA 85:980–984

    PubMed  CAS  Google Scholar 

  • Low MG, Saltiel AR (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239:268–275

    PubMed  CAS  Google Scholar 

  • Low MG, Ferguson MAJ, Futterman AH, Silman I (1986) Covalently attached phosphatidylinositol as a hydrophobic anchor for membrane proteins. Trends Biochem Sci 11:212–214

    CAS  Google Scholar 

  • Luttrell LM, Hewlett EL, Romero G, Rogol AD (1988) Bordetella pertussistoxin treatment attenuates some of the effects of insulin in BC3H-1 murine myocytes. J Biol Chem 263:6134–6141

    Google Scholar 

  • Manchester KL (1963) Stimulation by insulin of incorporation of [32P] phosphate and [14C] acetate into lipid and protein of isolated rat diaphragm. Biochim Biophys Acta 70:208–210

    CAS  Google Scholar 

  • Mato JM, Kelly KL, Abler A, Jarett L (1987a) Identification of a novel insulin-sensitive glycophospholipid from H35 hepatoma cells. J Biol Chem 262:2131–2137

    PubMed  CAS  Google Scholar 

  • Mato JM, Kelly KL, Abler A, Jarett L, Corkey BE, Cashel JA, Zopf D (1987b) Partial structure of an insulin-sensitive glycophospholipid. Biochem Biophys Res Commun 146:764–772

    CAS  Google Scholar 

  • Morgan DO, Roth RA (1987) Acute insulin action requires insulin receptor kinase activity: introduction of an inhibitory monoclonal antibody into mammalian cells blocks the rapid effects of insulin. Proc Natl Acad Sci USA 84:41–45

    PubMed  CAS  Google Scholar 

  • Morgan DO, Ho L, Korn LJ, Roth RA (1986) Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinase. Proc Natl Acad Sci USA 83:328–332

    PubMed  CAS  Google Scholar 

  • O’Brien RM, Siddle K, Houslay MD, Hall A (1987) Interaction of the human insulin receptor with the rasoncogene product p21. FEBS Lett 217:253–259

    PubMed  Google Scholar 

  • Parker JC, Kiechle FL, Jarett L (1982) Partial purification from hepatoma cells of an in-tracellular substance which mediates the effects of insulin on pyruvate dehydrogenase and low K m cAMP phosphodiesterase. Arch Biochem Biophys 215:339–344

    PubMed  CAS  Google Scholar 

  • Pelosin J-M, Vilgrain I, Chambaz EM (1987) A single form of protein kinase C is expressed in bovine adrenocortical tissue, as compared to four chromatographically resolved isozymes in rat brain. Biochem Biophys Res Commun 147:382–391

    CAS  Google Scholar 

  • Penington SR, Martin BR (1985) Insulin-stimulated phosphoinositide metabolism in isolated fat cells. J Biol Chem 260:11309–11045

    Google Scholar 

  • Pershadsingh HA, Gale RD, McDonald JM (1987) Chelation of intracellular calcium prevents stimulation of glucose transport by insulin and insulinomimetic agents in the adipocyte. Evidence for a common mechanism. Endocrinology 121:1727–1732

    CAS  Google Scholar 

  • Pilch PF, Czech MP (1980) The subunit structure of the high affinity insulin receptor. J Biol Chem 255:1722–1731

    PubMed  CAS  Google Scholar 

  • Romero G, Luttrell L, Rogol A, Zeller K, Hewlett E, Larner J (1988) Phosphatidylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators. Science 240:509–511

    PubMed  CAS  Google Scholar 

  • Rosen OM (1987) After insulin binds. Science 237:1452–1458

    PubMed  CAS  Google Scholar 

  • Rosen OM, Rubin CS, Cobb MH, Smith CJ (1981) Insulin stimulates the phosphorylation of ribosomal protein S6 in a cell free system derived from 3T3-L1 adipocytes. J Biol Chem 256:3630–3633

    PubMed  CAS  Google Scholar 

  • Saltiel AR (1987) Insulin generates an enzyme modulator from hepatic plasma membranes: regulation of cAMP phosphodiesterase, pyruvate dehydrogenase and ade nylate cyclase. Endocrinology 120:967–972

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Cuatrecasas P (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83:5793–5797

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Sorbara-Cazan LR (1987) Inositol glycan mimics the action of insulin on glucose utilization in rat adipocytes. Biochem Biophys Res Commun 149: 1084–1092

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Steigerwalt RW (1986) Purification of a putative insulin-sensitive cAMP phosphodiesterase or its catalytic domain from rat adipocytes. Diabetes 35:698–7

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Jacobs S, Siegel M, Cuatrecasas P (1981) Insulin stimulates the release from liver plasma membranes of a chemical modulator of pyruvate dehydrogenase. Biochem Biophys Res Commun 102:1041–1047

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Siegel MI, Jacobs S, Cuatrecasas P (1982) Putative mediators of insulin action: regulation of pyruvate dehydrogenase and adenylate cyclase activities. Proc Natl Acad Sci USA 79:3513–3517

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Doble A, Jacobs S, Cuatrecasas P (1983) Putative mediators of insulin action regulate hepatic acetyl CoA carboxylase activity. Biochem Biophys Res Commun 110:789–795

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Fox JA, Sherline P, Cuatrecasas P (1986) Insulin stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 233:967–972

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Sherline P, Fox JA (1987) Insulin-stimulated diacylglycerol production results from the hydrolysis of a novel phosphatidylinositol glycan. J Biol Chem 262: 1116–1121

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Osterman DG, Darnell JC (1989) The role of glycosyl-phosphoinositides in insulin action. Cold Spring Harbor Symp Quant Biol 53:955–963

    Google Scholar 

  • Sanger F (1959) Chemistry of insulin. Science 129:1340–1344

    PubMed  CAS  Google Scholar 

  • Seals JR, Czech MP (1980) Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator. J Biol Chem 255:6529–6531

    PubMed  CAS  Google Scholar 

  • Smal J, DeMeyts P (1987) Role of kinase C in the insulin-like effects of human growth hormone in rat adipocytes. Biochem Biophys Res Commun 147:1232–1240

    PubMed  CAS  Google Scholar 

  • Spooner PM, Chernick SS, Garrison MM, Scow RO (1979) Insulin regulation of lipopro-tein lipase activity and release in 3T3-L1 adipocytes. J Biol Chem 254:10021–10029

    PubMed  CAS  Google Scholar 

  • Stein JM, Hale CN (1974) The effect of insulin on 32P incorporation into rat-fat cell phospholipids. Biochim Biophys Acta 337:41–49

    PubMed  CAS  Google Scholar 

  • Stralfors P, Fredrickson G, Olsson H, Beifrage P (1984) Reversible phosphorylation of hormone-sensitive lipase in the hormonal control of adipose tissue lipolysis. Horm Cell Regul 8:153–162

    Google Scholar 

  • Suzuki S, Toyoto T, Suzuki H, Goto Y (1984) A putative second messenger of insulin action regulates hepatic microsomal glucose-6-phosphatase. Biochem Biophys Res Commun 118:40–46

    CAS  Google Scholar 

  • Thampy KG, Wakil SJ (1985) Activation of acetyl CoA carboxylase. J Biol Chem 260:6318–6323

    PubMed  CAS  Google Scholar 

  • Trevillyan JM, Perisic O, Traugh JA, Byus CV (1985) Insulin and phorbol ester-stimulated phosphorylation of ribosomal protein S6. J Biol Chem 260:3041–3044

    PubMed  CAS  Google Scholar 

  • Ullrich A (1977) Rat insulin genes: construction of plasmids containing the coding sequences. Science 196:1313–1319

    PubMed  CAS  Google Scholar 

  • Ullrich A, Bell JR, Chen EY, Herrera R, Petrozelli LM, Dull TJ, Gray A et al. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761

    PubMed  CAS  Google Scholar 

  • Vaartges WJ, deHaas CGM, van den Bergh SG (1986) Phorbol esters, but not epidermal growth factor or insulin, rapidly decrease soluble protein kinase C activity in rat hepatocytes. Biochem Biophys Res Commun 130:1328–1333

    Google Scholar 

  • Van de Werve G, Proielto J, Jenrenaud B (1985) Tumor-promoting phorbol esters increase basal and inhibit insulin stimulated lipogenesis in rat adipocytes without decreasing insulin binding. Biochem J 225:523–527

    PubMed  Google Scholar 

  • Venkateson N, Davidson MB (1983) Hepatic insulin effects independent of changes in Ca metabolism. Life Sci 32:467–474

    Google Scholar 

  • Villar-Palasi C, Larner J (1960) Insulin mediated effect on the activity of UDPG-glycogen transglucosylase in muscle. Biochem Biophys Acta 39:171–173

    PubMed  CAS  Google Scholar 

  • Walaas SI, Horn RS, Adler A, Albert KA, Walaas O (1987) Insulin increases membrane protein kinase C activity in rat diaphragm. FEBS Lett 220:311–318

    PubMed  CAS  Google Scholar 

  • Witters LA (1981) Insulin stimulates the phosphorylation of acetyl CoA carboxylase. Biochem Biophys Res Commun 100:872–878

    PubMed  CAS  Google Scholar 

  • Witters LA, Watts TD (1988) An autocrine factor from Reuber hepatoma cells that stimulates DNA synthesis and acetyl CoA carboxylase: characterization of biologic activity and evidence for a glycan structure. J Biol Chem 263:8027–8036

    PubMed  CAS  Google Scholar 

  • Witters LA, Watts TD, Gould GW, Lienhard GE, Gibbs EM (1987) Regulation of protein phosphorylation by insulin and an insulin-mimetic oligosaccharide in 3T3-L1 adipocytes and FaO hepatoma cells. Biochem Biophys Res Commun 153:992–998

    Google Scholar 

  • Zick Y, Sagi-Eisenberg R, Pines M, Gierschik P, Spiegel AM (1986) Multisite phosphorylation of the α subunit of transducin by the insulin receptor kinase and protein kinase C. Proc Natl Acad Sci USA 83:9294–9297

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saltiel, A.R., Cuatrecasas, P. (1990). Second Messengers of Insulin Action. In: Cuatrecasas, P., Jacobs, S. (eds) Insulin. Handbook of Experimental Pharmacology, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74098-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74098-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74100-5

  • Online ISBN: 978-3-642-74098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics