Skip to main content

Insulin Receptor-Mediated Transmembrane Signalling

  • Chapter
Insulin

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 92))

Abstract

At least in part because of the intense interest generated by the dramatic therapeutic effects of insulin, when it was first used for patients like Leonard Thompson in the early 1920s, no single hormone has been more thoroughly investigated than has insulin. Yet, at this moment in time, over 60 years since the discovery of insulin, the precise series of reactions whereby insulin triggers a cellular response is not known. Nonetheless, as summarized by other chapters in this volume, an enormous amount of detailed information has been acquired about the structural requirements for the interaction of insulin with its receptor, about the oligomeric structure of the receptor complex which associates with other proteins in the plasma membrane, about the receptor’s autophosphorylation and tyrosine kinase activity and about the precise amino acid sequences and biosynthesis of the receptor a and ßsubunits. There is no question in anyone’s mind that all of the many actions of insulin stem from the initial interaction of insulin with its plasma membrane receptor. But, the main question yet to be answered is: how does receptor triggering cause such a diverse spectrum of responses in the cells with which insulin interacts? The diversity of response to insulin (Table 1) is seen not only in terms of the wide variety of processes regulated (ranging from changes in membrane polarization to the stimulation of DNA synthesis) but also in terms of the time frame of the responses, ranging from milliseconds (membrane polarization) to minutes (stimulation of glucose transport) to tens of hours (stimulation of DNA synthesis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aglio LS, Maturo JM III, Hollenberg MD (1985) Receptors for insulin and epidermal growth factor: interaction with organomercurial agarose. J Cell Biochem 28:143–157

    PubMed  CAS  Google Scholar 

  • Avruch J, Alexander MC, Plamer JL, Pierce MW, Nemenoff RA, Blaekshear PJ, Tipper JP, Witters LA (1982) Role of insulin-stimulated protein phosphorylation in insulin action. Fed Proc 41:2629–2633

    PubMed  CAS  Google Scholar 

  • Baron MD, Sonksen PH (1983) Elucidation of the quaternary structure of the insulin receptor. Biochem J 212:79–84

    PubMed  CAS  Google Scholar 

  • Bernier M, Laird DM, Lane MD (1987) Insulin-activated tyrosine phosphorylation of a 15-kilodalton protein in intact 3T3-L1 adipocytes. Proc Natl Acad Sci USA 84:1844–1848

    PubMed  CAS  Google Scholar 

  • Bernier M, Laird DM, Lane MD (1988) Identification and role of a 15-kilodalton cellular target of the insulin receptor tyrosine kinase. In: Goren HJ, Hollenberg MD, Roncari DAK (eds) Insulin action and diabetes. Raven, New York, pp 117–128

    Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann Rev Biochem 56:159–193

    PubMed  CAS  Google Scholar 

  • Boeynaems JM, Dumont JE (1977) The two-step model of ligand-receptor interaction. Mol Cell Endocrinol 7:33–47

    PubMed  CAS  Google Scholar 

  • Boeynaems JM, Dumont JE (1980) Outlines of receptor theory. Elsevier/North-Holland Biomédical, Amsterdam New York Oxford

    Google Scholar 

  • Bonne D, Belhadj O, Cohen P (1978) Calcium as modulator of the hormonal-receptors-biological response coupling system. Effects of Ca2 + ions on the insulin activated 2-deoxyglucose transport in rat fat cells. Eur J Biochem 87:261–266

    Google Scholar 

  • Brossette N, van Obberghen E, Fehlmann M (1984) Interaction between insulin receptors and major histocompatibility complex antigens in mouse liver membranes. Diabetologia 27:74–76

    PubMed  CAS  Google Scholar 

  • Chou CK, Dull TJ, Russell DS, Gherzi R, Lebwohl D, Ullrich A, Rosm OM (1987) Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem 262:1842–1847

    PubMed  CAS  Google Scholar 

  • Chvatchko Y, van Obberghen E, Kiger N, Fehlmann M (1983) Immunoprecipitation of insulin receptors by antibodies against class 1 antigens of the murine H-2 major histocompatibility complex. FEBS Lett 163:207–211

    PubMed  CAS  Google Scholar 

  • Cohen S, Carpenter G, King L Jr (1980) Epidermal growth factor-receptor-protein kinase interactions: copurification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem 255:4834–4842

    PubMed  CAS  Google Scholar 

  • Colca JR, DeWald DB, Pearson JD, Palazuk BJ, Laurino JP, McDonald JM (1987) Insulin stimulates the phosphorylation of calmodulin in intact adipocytes. J Biol Chem 262:11399–11402

    PubMed  CAS  Google Scholar 

  • Conn PM, Rogers DC, Stewart JM, Neidel J, Sheffield T (1982) Conversion of a gonadotropin-releasing hormone antagonist to an agonist. Nature 296:653–655

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P, Hollenberg MD (1976) Membrane receptors and hormone action. Adv Protein Chem 30:251–451

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P, Illiano G (1971) Membrane sialic acid and the mechanism of insulin action in adipose tissue cells. J Biol Chem 246:4938–4946

    PubMed  CAS  Google Scholar 

  • De Haen C (1976) The non-stoichiometric floating receptor model for hormone-sensitive adenylate cyclase. J Theor Biol 58:383–400

    PubMed  Google Scholar 

  • Denton RM, Brownsey RW, Belsham GJ (1981) A partial view of the mechanism of insulin action. Diabetologia 21:347–362

    PubMed  CAS  Google Scholar 

  • Due C, Simonsen M, Olsson L (1986) The major histocompatibility complex class I heavy chain as a structural subunit of the human cell membrane insulin receptor: implications for the range of biological functions of histocompatibility antigens. Proc Natl Acad Sci USA 83:6007–6011

    PubMed  CAS  Google Scholar 

  • Ebina Y, Araki E, Taira M, Shimida F, Mori M, Craik CS, Siddle K, Pierce SB, Roth RA, Rutter WJ (1987) Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin-and antibody-stimulated glucose uptake and receptor kinase activity. Proc Natl Acad Sci USA 84:704–708

    PubMed  CAS  Google Scholar 

  • Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ (1986) Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell 45:721–732

    PubMed  CAS  Google Scholar 

  • Escobedo JA, Williams LT (1988) Intracellular structural domains of the platelet-derived growth factor receptor have distinct functions. Clin Res 36:540A

    Google Scholar 

  • Fain JN (1980) Hormonal regulation of lipid mobilization from adipose tissue. In: Litwack G (ed) Biochemical actions of hormones, vol VII Academic, New York, pp 119–204

    Google Scholar 

  • Farese RV, Farese RV Jr, Sabir MA, Larson RE, Trudeau WL III (1984) The mechanism of action of insulin on phospholipid metabolism in rat adipose tissue. Requirement for protein synthesis and a carbohydrate source, and relationship to activation of pyruvate dehydrogenase. Diabetes 33:648–655

    CAS  Google Scholar 

  • Farese RV, Davis JS, Barnes DE, Standaert ML, Babischkin JS, Hock R, Rosic NK, Pol-let RJ (1985) The de novophospholipid effect of insulin is associated with increases in diacylglycerol, but not inositol phosphates or cytosolic Ca2+. Biochem J 231:269–278

    PubMed  CAS  Google Scholar 

  • Farese RV, Kuo J-Y, Babischkin JS, Davis JS (1986) Insulin provokes a transient activation of phospholipase C in the rat epididymal fat pad. J Biol Chem 261:8589–8592

    PubMed  CAS  Google Scholar 

  • Fehlmann M, Peyron J-F, Samson M, van Obberghen E, Brandenburg D, Brossette N (1985) Molecular association between major histocompatibility complex class I antigens and insulin receptors in mouse liver membranes. Proc Natl Acad Sci USA 82:8634–8637

    PubMed  CAS  Google Scholar 

  • Forsayeth JR, Caro JF, Sinha MK, Maddux BA, Goldfme ID (1987a) Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity. Proc Natl Acad Sci USA 84:3448–3451

    PubMed  CAS  Google Scholar 

  • Forsayeth JR, Montemurro A, Maddux BA, DePirro R, Goldfme ID (1987b) Effect of monocloncal antibodies on human insulin receptor autophosphorylation, negative cooperativity, and down regulation. J Biol Chem 262:4134–4140

    PubMed  CAS  Google Scholar 

  • Gherzi R, Russell DS, Taylor SI, Rosen OM (1987) Reevaluation of the evidence that an antibody to the insulin receptor is insulinmimetic without activating the protein tyrosine kinase activity of the receptor. J Biol Chem 262:16900–16905

    PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56:615–649

    PubMed  CAS  Google Scholar 

  • Goldfme ID (1987) The insulin receptor: molecular biology and transmembrane signaling. Endocr Rev 8:235–255

    Google Scholar 

  • Goldfme ID, Vigneri R, Cohen D, Pliam NB, Kahn CR (1977) Intracellular binding sites for insulin are immunologically distinct from those on the plasma membrane. Nature 269:698–700

    Google Scholar 

  • Goldfine ID, Purrello F, Vigneri R, Clawson GA (1985) Insulin and the regulation of isolated nuclei and nuclear subfractions: potential relationship of mRNA metabolism. In: DeFronzo R (ed) Diabetes metabolism reviews, vol 1. Wiley, New York, pp 119–137

    Google Scholar 

  • Goren HJ, Elliott C, Dudley RA (1983) Adipocyte insulin-binding species: the size and subunit composition of the larger binding species. J Cell Biochem 21:161–177

    PubMed  CAS  Google Scholar 

  • Goren HJ, Northup JK, Hollenberg MD (1985) Action of insulin modulated by pertussis toxin in rat adipocytes. Can J Physiol Pharmacol 63:1017–1022

    PubMed  CAS  Google Scholar 

  • Gottschalk WK, Jarett L (1985) Intracellular mediators of insulin action. Diabetes Metab Rev 1:229–259

    PubMed  CAS  Google Scholar 

  • Gottschalk WK, Macaulay SL, Macaulay JO, Kelly K, Smith JA, Jarett L (1986) Characterization of mediators of insulin action. Ann NY Acad Sci 488:385–405

    PubMed  CAS  Google Scholar 

  • Graves CB, Goewert RR, McDonald JM (1985) The insulin receptor contains a calmodulin-binding domain. Science 230:827–829

    PubMed  CAS  Google Scholar 

  • Gregory H, Taylor CL, Hopkins CR (1982) Luteinizing hormone release from dissociated pituitary cells by dimerization of occupied LHRH receptors. Nature 300:269–271

    PubMed  CAS  Google Scholar 

  • Haring HU, White MF, Machicao F, Ermel B, Schleicher E, Obermaier B (1987) Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells. Proc Natl Acad Sci USA 84:113–117

    PubMed  CAS  Google Scholar 

  • Harmon JT, Kahn CR, Kempner ES, Schlegel W (1980) Characterization of the insulin receptor in its membrane environment by radiation inactivation. J Biol Chem 255:3412–3419

    PubMed  CAS  Google Scholar 

  • Harmon JT, Kempner ES, Kahn CR (1981) Demonstration by radiation inactivation that insulin alters the structure of the insulin receptor in rat liver membranes. J Biol Chem 256:7719–7722

    PubMed  CAS  Google Scholar 

  • Harmon JT, Hedo JA, Kahn CR (1983) Characterization of a membrane regulator of insulin receptor affinity. J Biol Chem 258:6875–6881

    PubMed  CAS  Google Scholar 

  • Hayes GR, Lockwood DH (1986) The role of cell surface sialic acid in insulin receptor function and insulin action. J Biol Chem 261:2791–2798

    PubMed  CAS  Google Scholar 

  • Heidenreich KA, Zahniser NR, Berhanu P, Brandenburg D, Olefsky JM (1983) Structural differences between insulin receptors in the brain and peripheral target tissues. J Biol Chem 258:8527–8530

    PubMed  CAS  Google Scholar 

  • Heimerhorst E, Ng DS, Moule ML, Yip CC (1986) High molecular weight forms of the insulin receptor. Biochemistry 25:2060–2065

    Google Scholar 

  • Heyworth CM, Wallace AV, Houslay MD (1983) Insulin and glucagon regulate the activation of two distinct membrane-bound cyclic AMP phosphodiesterases in hepatocytes. Biochem J 214:99–110

    PubMed  CAS  Google Scholar 

  • Heyworth CM, Whetton AD, Wong S, Martin BR, Houslay MD (1985) Insulin inhibits the cholera-toxin-catalysed ribosylation of a M r-25000 protein in rat Over plasma membranes. Biochem J 228:593–603

    PubMed  CAS  Google Scholar 

  • Heyworth CM, Grey A-M, Wilson SR, Hanski E, Houslay MD (1986) The action of islet activating protein (pertussis toxin) on insulin’s ability to inhibit adenylate cyclase and activate cyclic AMP phosphodiesterases in hepatocytes. Biochem J 235:145–149

    PubMed  CAS  Google Scholar 

  • Hollenberg MD (1985) Receptor models and the action of neurotransmitters and hormones: some new perspectives. In: Yamamura HI et al. (ed) Neurotransmitter receptor binding, 2nd edn. Raven, New York, pp 1–39

    Google Scholar 

  • Hollenberg MD, Cuatrecasas P (1975) Insulin: interaction with membrane receptors and relationship to cyclic purine nucleotides and cell growth. Fed Proc 34:1556–1563

    PubMed  CAS  Google Scholar 

  • Hopkins CR, Semoff S, Gregory H (1981) Regulation of gonadotropin secretion of the anterior pituitary. Philos Trans R Soc Lond [Biol] 296:73–81

    CAS  Google Scholar 

  • Hunter T, Ling N, Cooper JA (1984) Protein kinase C phosphorylation of the GF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature 311:480–483

    PubMed  CAS  Google Scholar 

  • Jacobs S, Chang K-J, Cuatrecasas P (1978) Antibodies to purified insulin receptor have insulin-like activity. Science 200:1283–1284

    PubMed  CAS  Google Scholar 

  • Jacobs S, Sahyoun N, Saltiel A, Cuatrecasas P (1983) Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin-C. Proc Natl Acad Sci USA 80:6211–6213

    PubMed  CAS  Google Scholar 

  • Jarett L, Seals JR (1979) Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin-generated mediator from muscle. Science 206:1407–1408

    PubMed  CAS  Google Scholar 

  • Jarett L, Smith RM (1977) The natural occurrence of insulin receptors in groups on adipocyte plasma membranes as demonstrated with monomeric ferritin-insulin. J Supramol Struct 6:45–59

    PubMed  CAS  Google Scholar 

  • Johnson EM Jr, Andres RY, Bradshaw RA (1978) Characterization of the retrograde transport of nerve growth factor (NGF) using high specific activity [125I]NGF. Brain Res 150:319–331

    PubMed  CAS  Google Scholar 

  • Johnson LK, Vlodavsky I, Baxter JD, Gospodarowicz D (1980) Nuclear accumulation of epidermal growth factor in cultured rat pituitary cells. Nature 287:340–343

    PubMed  CAS  Google Scholar 

  • Kahn CR, Baird KL, Jarrett DB, Flier JS (1978) Direct demonstration that receptor crosslinking or aggregation is important in insulin action. Proc Natl Acad Sci USA 75:4209–4213

    PubMed  CAS  Google Scholar 

  • Kahn CR, Baird KL, Flier JS, Granfeld C, Harmon JT, Harrison LC, Karlsson FA, Kasuga M, King GL, Lang UC, Podskalny JM, van Obberghen E (1981) Insulin receptors, receptor antibodies, and the mechanism of insulin action. Recent Prog Horm Res 37:477–538

    PubMed  CAS  Google Scholar 

  • Kahn CR, Sethu S, Reddy K, Shoelson S, Goren HJ, White MF (1988) Regulation of the insulin receptor by multi-site phosphorylation. In: Goren HJ, Hollenberg MD, Roncari DAK (eds) Insulin action and diabetes. Raven, New York (in press)

    Google Scholar 

  • Kanner BI, Metzger H (1983) Crosslinking of the receptors for immunoglobulin E depolarizes the plasma membrane of rat basophilic leukemia cells. Proc Natl Acad Sci USA 80:5744–5748

    PubMed  CAS  Google Scholar 

  • Kasuga M, Zick Y, Blithe DL, Crettaz M, Kahn CR (1982) Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature 298:667–669

    PubMed  CAS  Google Scholar 

  • Keating MT, Escobedo JA, Fantl WJ (1988) Ligand activation causes a phosphorylation-dependent change in platelet-derived growth factor receptor conformation. Clin Res 36:603A

    Google Scholar 

  • Kelly KL, Mato JM, Merida I, Jarett L (1987) Glucose transport and antilipolysis are differentially regulated by the polar head group of an insulin-sensitive glycophospholipid. Proc Natl Acad Sci USA 84:6404–6407

    PubMed  CAS  Google Scholar 

  • Khan MN, Savoie S, Bergeron JJM, Posner BI (1986) Characterization of rat liver endosomal fractions: in vivo activation of insulin-stimulable receptor kinase in these structures. J Biol Chem 261:8462–8472

    PubMed  CAS  Google Scholar 

  • Kiechle F, Jarett L (1985) The molecular basis of insulin action: membrane-associated reactions and intracellular mediators. In: Hollenberg MD (ed) Insulin its receptor and diabetes. Dekker, New York, pp 181–204

    Google Scholar 

  • King AC, Cuatrecasas P (1981) Peptide hormone-induced receptor mobility, aggregation, and internalization. New Engl J Med 305:77–88

    PubMed  CAS  Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    PubMed  CAS  Google Scholar 

  • Lafuse W, Edidin M (1980) Influence of the mouse major histocompatibility complex, H-2, on liver adenylate cyclase activity and on glucagon binding to liver cell membranes. Biochemistry 19:49–54

    PubMed  CAS  Google Scholar 

  • Larner J, Galasko G, Chenk K, DePaoli-Roach AA, Huang L, Daggy P, Kellogg J (1979) Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation. Science 206:1408–1410

    PubMed  CAS  Google Scholar 

  • Larner J, Cheng K, Schwartz C, Kikuchi K, Tamura S, Creacy S, Dubler R, Galasko G, Pullin C, Katz M (1982) Insulin mediators and their control of metabolism through protein phosphorylation. Recent Prog Horm Res 38:511–556

    PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Hiken JF, Inkster M, Scott CW, Mumby MC (1986) Insulin stimulates the generation of an adipocyte phosphoprotein that is isolated with a monoclonal antibody against the regulatory subunit of bovine heart cAMP-dependent protein kinase. Proc Natl Acad Sci USA 83:3649–3653

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Caron MG (1988) Adrenergic receptors: models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem 263:4993–4996

    PubMed  CAS  Google Scholar 

  • Levitzki A (1974) Negative cooperativity in clustered receptors as a possible basis for membrane action. J Theor Biol 44:367–372

    PubMed  CAS  Google Scholar 

  • Levitzki A (1987) Regulation of adenylate cyclase by hormones and G-proteins. FEBS Lett 211:113–118

    PubMed  CAS  Google Scholar 

  • Lin CR, Chen WS, Lazar CS, Carpenter CD, Gill GN, Evans RM, Rosenfeld MG (1986) Protein kinase C phosphorylation at Thr 654 of the unoccupied EGF receptor and EGF binding regulate functional receptor loss by independent mechanisms. Cell 44:839–848

    PubMed  CAS  Google Scholar 

  • Machicao E, Wieland OH (1984) Evidence that the insulin receptor-associated protein kinase acts as a phosphatidylinositol kinase. FEBS Lett 175:113–116

    PubMed  CAS  Google Scholar 

  • Madoff DH, Martensen TM, Lane MD (1988) Insulin and insulin-like growth factor-1 stimulate the phosphorylation on tyrosine of a 160 kDa cytosolic protein in 3T3-L1 adipocytes. Biochem J 252:7–15

    PubMed  CAS  Google Scholar 

  • Mato JM, Kelly KL, Abler A, Jarett L (1987) Identification of a novel insulin-sensitive glycophospholipid from H35 hepatoma cells. J Biol Chem 262:2131–2137

    PubMed  CAS  Google Scholar 

  • Maturo JM III, Hollenberg MD (1978) Insulin receptor: interaction with nonreceptor glycoprotein from liver cell membranes. Proc Natl Acad Sci USA 75:3070–3074

    PubMed  CAS  Google Scholar 

  • Maturo JM III, Hollenberg MD, Aglio LS (1983) Insulin receptor: insulin-modulated in-terconversion between distinct molecular forms involving disulflde-sulfhydryl exchange. Biochemistry 22:2579–2586

    PubMed  CAS  Google Scholar 

  • McDonald JM, Pershadsingh HA (1985) The role of calcium in the transduction of insulin action. In: Czech MP (ed) Molecular basis of insulin action. Plenum, New York, pp 103–117

    Google Scholar 

  • Meruelo D, Edidin M (1979) The biological function of the major histocompatibility complex: hypotheses. In: Marchalonis JJ, Cohen N (eds) Self/non-self discrimination. Plenum, New York, pp 231–253 (Contemporary topics in immunobiology, vol 9)

    Google Scholar 

  • Metzger H, Ishizaka T (1982) Transmembrane signalling by receptor aggregation: the mast cell receptor for IgE as a case study. Fed Proc Fed Am Soc Exp Biol 41:7–34

    Google Scholar 

  • Miller DS (1988) Stimulation of RNA and protein synthesis by intracellular insulin. Science 240:506–509

    PubMed  CAS  Google Scholar 

  • Morgan DO, Roth RA (1987) Acute insulin action requires insulin receptor kinase activity: introduction of an inhibitory monoclonal antibody into mammalian cells blocks the rapid effects of insulin. Proc Natl Acad Sci USA 84:41–45

    PubMed  CAS  Google Scholar 

  • Morgan DO, Ho L, Korn LJ, Roth RA (1986) Insulin action is blocked by monoclonal antibody that inhibits the insulin receptor kinase. Proc Natl Acad Sci USA 83:328–332

    PubMed  CAS  Google Scholar 

  • Northup JK (1985) Overview of the guanine nucleotide regulatory protein systems, Nsand Ni, which regulate adenylate cyclase activity in plasma membranes. In: Cohen P, Houslay MD (eds) Molecular mechanisms of transmembrane signalling. Elsevier, Amsterdam, pp 91–116

    Google Scholar 

  • O’Brien RM, Houslay MD, Milligan G, Siddle K (1987) The insulin receptor tyrosyl kinase phosphorylates holomeric forms of the guanine nucleotide regulatory proteins Gi and Go. FEBS Lett 212:281–288

    PubMed  Google Scholar 

  • Pastan IH, Willingham MC (1981) Receptor-mediated endocytosis of hormones in cultured cells. Annu Rev Physiol 43:239–250

    PubMed  CAS  Google Scholar 

  • Pennington SR, Martin BR (1985) Insulin-stimulated phosphoinositide metabolism in isolated fat cells. J Biol Chem 260:11039–11045

    PubMed  CAS  Google Scholar 

  • Perrotti N, Accili D, Marcus-Samuels B, Rees-Jones RW, Taylor SI (1987) Insulin stimulates phosphorylation of a 120-kDa glycoprotein substrate (ppl20) for the receptor-associated protein kinase in intact H-35 hepatoma cells. Proc Natl Acad Sci USA 84:3137–3140

    PubMed  CAS  Google Scholar 

  • Pessin JE, Gitomer W, Oka Y, Oppenheimer CL, Czech MP (1983) ß-adrenergic regulation of insulin and epidermal growth factor receptors in rat adipocytes. J Biol Chem 258:7386–7394

    PubMed  CAS  Google Scholar 

  • Phillips ML, Moule ML, Delovitch TL, Yip CC (1986) Class I histocompatibility antigens and insulin receptors: evidence for interactions. Proc Natl Acad Sci USA 83:3474–3478

    PubMed  CAS  Google Scholar 

  • Phillips SA, Perrotti N, Taylor SI (1987) Rat liver membranes contain a 120 kDa glycoprotein which serves as a substrate for the tyrosine kinases of the receptors for insulin and epidermal growth factor. FEBS Lett 212:141–144

    PubMed  CAS  Google Scholar 

  • Podlecki DA, Smith RM, Kao M, Tsai P, Huecksteadt T, Brandenburg D, Lasher RS, Jarett L, Olefsky JM (1987) Nuclear translocation of the insulin receptor: a possible mediator of insulin’s long term effects. J Biol Chem 262:3362–3368

    PubMed  CAS  Google Scholar 

  • Posner BI, Khan MN, Bergeron JJM (1988) The role of endosomal kinase activity in insulin action. In: Goren HJ, Hollenberg MD, Roncafi DAK (eds) Insulin action and diabetes. Raven, New York, pp 141–150

    Google Scholar 

  • Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284:17–22

    PubMed  CAS  Google Scholar 

  • Romero G, Luttrell L, Rogol A, Zeller K, Hewlett E, Lamer J (1988) Phosphat-idylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators. Science 240:509–511

    PubMed  CAS  Google Scholar 

  • Rosen OM (1987) After insulin binds. Science 237:1452–1458

    PubMed  CAS  Google Scholar 

  • Rosen OM, Herrera R, Olowe Y, Petruzzelli LM, Cobb MH (1983) Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc Natl Acad Sci USA 80:3237–3240

    PubMed  CAS  Google Scholar 

  • Roth RA (1988) Monoclonal antibodies as probes of insulin action and degradation. In: Goren HJ, Hollenberg MD, Roncari DAK (eds) Insulin action and diabetes. Raven, New York, pp 129–140

    Google Scholar 

  • Roth RA, Cassell DJ (1983) Evidence that the insulin receptor is a protein kinase. Science 219:299–301

    PubMed  CAS  Google Scholar 

  • Rutter WJ, Morgan D, Ebina Y, Wang L-H, Roth R, Ellis L (1988) Membrane linked insulin receptor tyrosine kinase stimulates the insulin specific response. In: Goren HJ, Hollenberg MD, Roncari DAK (eds) Insulin action and diabetes. Raven, New York, pp 1–12

    Google Scholar 

  • Saltiel AR, Cuatrecasas P (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83:5793–5797

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Fox JA, Sherline P, Cuatrecasas P (1986) Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 233:967–972

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Sherline P, Fox JA (1987) Insulin-stimulated diacylglycerol production results from the hydrolysis of a novel phosphatidylinositol glycan. J Biol Chem 262:1116–1121

    PubMed  CAS  Google Scholar 

  • Savion N, Vlodavsky I, Gospodarowicz D (1981) Nuclear accumulation of epidermal growth factor in cultured bovine corneal endothelial and granulosa cells. J Biol Chem 256:1149–1154

    PubMed  CAS  Google Scholar 

  • Schlessinger J, Shechter Y, Willingham MC, Pastan I (1978) Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc Natl Acad Sci USA 75:2659–2663

    PubMed  CAS  Google Scholar 

  • Schlessinger J, van Obberghen E, Kahn CR (1980) Insulin and antibodies against insulin receptor cap on the membrane of cultured human lymphocytes. Nature 286:729–731

    PubMed  CAS  Google Scholar 

  • Simpson IA, Hedo JA (1984) Insulin receptor phosphorylation may not be a prerequisite for acute insulin action. Science 223:1301–1304

    PubMed  CAS  Google Scholar 

  • Smith RM, Jarett L (1987) Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-L1 adipocytes by an insulin-receptor mediated process. Proc Natl Acad Sci USA 84:459–463

    PubMed  CAS  Google Scholar 

  • Stadtmauer L, Rosen OM (1986) Increasing the cAMP content of IM-9 cells alters the phosphorylation state and protein kinase activity of the insulin receptor. J Biol Chem 261:3402–3407

    PubMed  CAS  Google Scholar 

  • Taylor D, Uhing RJ, Blackmore PF, Prpic V, Exton JH (1985) Insulin and epidermal growth factor do not affect phosphoinositide metabolism in rat liver plasma membranes and hepatocytes. J Biol Chem 260:2011–2014

    PubMed  CAS  Google Scholar 

  • Thuren T, Tulkki A-P, Virtanen JA, Kinnunen PKJ (1987) Triggering of the activity of phospholipase A2 by an electric field. Biochemistry 26:4907–4910

    PubMed  CAS  Google Scholar 

  • Tornqvist HE, Gunsalus JR, Avruch J (1988) Identification of the insulin receptor tyrosine residues autophosphorylated in vitro and in vivo: relationship to receptor kinase activation. In: Goren HJ, Hollenberg MD, Roncari DAK (eds) Insulin action and diabetes. Raven, New York (in press)

    Google Scholar 

  • van Obberghen E, Kowalski A (1982) Phosphorylation of the hepatic insulin receptor: stimulating effect of insulin cells and in a cell-free system. FEBS Lett 143:179–182

    PubMed  Google Scholar 

  • White MF, Maron R, Kahn CR (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185, 000 protein in intact cells. Nature 318:183–186

    PubMed  CAS  Google Scholar 

  • White MF, Stegmann EW, Dull TJ, Ullrich A, Kahn CR (1987) Characterization of an endogenous substrate of the insulin receptor in cultured cells. J Biol Chem 262:9769–9777

    PubMed  CAS  Google Scholar 

  • Yankner BA, Shooter EM (1979) Nerve growth factor in the nucleus: interaction with receptors in the nuclear membrane. Proc Natl Acad Sci USA 76:1269–1273

    PubMed  CAS  Google Scholar 

  • Yip CC, Moule ML, Yeung CWT (1982) Subunit structure of insulin receptor of rat adipocytes as demonstrated by photoaffmity labeling. Biochemistry 21:2940–2945

    PubMed  CAS  Google Scholar 

  • Yip CC, Moule ML (1983) Structure of the insulin receptor of rat adipocytes: the three interconvertible redoc forms. Diabetes 32:760–767

    PubMed  CAS  Google Scholar 

  • Zick Y, Rees-Jones RW, Taylor SI, Gorden P, Roth J (1984) The role of antireceptor antibodies in stimulating phosphorylation of the insulin receptor. J Biol Chem 259:4396–4400

    PubMed  CAS  Google Scholar 

  • Zierler K, Wu F-S (1988) Insulin acts on Na, K, and Ca currents. Clin Res 36:624A

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hollenberg, M.D. (1990). Insulin Receptor-Mediated Transmembrane Signalling. In: Cuatrecasas, P., Jacobs, S. (eds) Insulin. Handbook of Experimental Pharmacology, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74098-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74098-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74100-5

  • Online ISBN: 978-3-642-74098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics