Skip to main content
Book cover

Insulin pp 3–22Cite as

Insulin Chemistry

  • Chapter
  • 404 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 92))

Abstract

Major aims of insulin chemistry are the large-scale production of the hormone for the treatment of diabetes mellitus as well as laboratory-scale syntheses of analogs for structure-function studies, of radioactive tracers, and of “tailormade” special derivatives. Further, one should include the detection and isolation of new native insulins and related compounds. The total synthesis, accomplished 25 years ago by the groups of ZAHN (MEIENHOFER et al. 1963), KATSOYANNIS (1964), and in China marked the advent of a new era in pep tide and protein chemistry. Remarkable progress has since been achieved through refinement of synthetic and semisynthetic procedures, the advances in recombinant DNA techniques, and high pressure liquid chromatography (HPLC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrosius D, Bala-Mohan S, Behrendt C, Schäfer K, Schüttler A, Brandenburg D (1987) New photoreactive derivatives of insulin for affinity-labelling of the insulin receptor. In: Theodoropoulos D (ed) Peptides 1986. De Gruyter, New York, pp 521–523

    Google Scholar 

  • Assoian RK, Thomas NE, Kaiser ET, Tager HS (1982) [LeuB24]Insulin and [AlaB24]insulin: altered structures and cellular processing of B24-substituted insulin analogs. Proc Natl Acad Sci USA 79:5147–5151

    PubMed  CAS  Google Scholar 

  • Bahrami S, Zahn H, Brandenburg D, Machulla H-J, Dutschka K (1980) [B1-125I-Desaminotyrosine] insulin — a novel homogeneous insulin tracer. Radiochem Radioanal Lett 45:221–226

    CAS  Google Scholar 

  • Brandenburg D, Saunders D (1985) Preparation and characterization of photoactivatable insulin analogues. In: De Pirro R, Lauro R (eds) Insulin receptors. Field Educational Italia, ACTA MEDICA, Rome, pp 20–32 (Handbook on receptor research)

    Google Scholar 

  • Brandenburg D, Wollmer A (1980) (eds) Insulin: chemistry, structure and function of insulin and related hormones. De Gruyter, New York

    Google Scholar 

  • Brandenburg D, Gattner H-G, Schermutzki W, Schüttler A, Uschkoreit J, Weimann J, Wollmer A (1977) Crosslinked insulins: preparation, properties, and applications. In: Friedman M (ed) Protein crosslinking: biochemical and molecular aspects. Plenum, New York, pp 261–282 (Advances in experimental medicine and biology, vol 86 A.)

    Google Scholar 

  • Brandenburg D, Saunders D, Schüttler A (1983) Pancreatic hormones. In: Jones JH (senior reporter) Amino-acids, peptides and proteins, vol 14. Specialist periodical reports. Royal Society of Chemistry, London, pp 461-476

    Google Scholar 

  • Brange J (1987) Galenics of insulin. The physico-chemical and pharmaceutical aspects of insulin and insulin preparations. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Brange J, Ribel U, Hansen JF, Dodson G, Hansen MT, Havelund S, Melberg SG, Noms F, Noms K, Snel L, Sørensen AR, Voigt HO (1988) Monomeric insulins obtained by protein engineering and their medical implications. Nature 333:679–682

    PubMed  CAS  Google Scholar 

  • Breddam K, Johansen JT (1984) Semisynthesis of human insulin utilizing chemically modified carboxypeptidase Y. Carlsberg Res Commun 49:463–472

    CAS  Google Scholar 

  • Büllesbach EE (1982) Semisynthesis of a shortened open-chain proinsulin. Tetrahedron Lett 23:1877–1880

    Google Scholar 

  • Büllesbach EE, Brandenburg D (1981) Synthesis of insulin analogues. In: Keck K, Erb P (eds) Basic and clinical aspects of immunity to insulin. De Gruyter, New York, pp 395–419

    Google Scholar 

  • Burke GT, Schwartz G, Katsoyannis PG (1984) Nature of the B10 ammo acid residue. Requirements for high biological activity of insulin. Int J Pept Protein Res 23:394–401

    PubMed  CAS  Google Scholar 

  • Cao Q-P, Geiger R, Langner D, Geisen K (1986) Biological activity in vivo of insulin analogues modified in the N-terminal region of the B-chain. Biol Chem Hoppe Seyler 367:135–140

    PubMed  CAS  Google Scholar 

  • Cao Q-P, Zhang Y-S, Geiger R (1988) Comparison of reaction rates in trypsin-catalysed transamidation of porcine insulin and its B29-arginme analogue. Biol Chem Hoppe-Seyler 369:283–287

    PubMed  CAS  Google Scholar 

  • Casaretto M, Spoden M, Diaconescu C, Gattner H-G, Zahn H, Brandenburg D, Wollmer A (1987) Shortened insulin with enhanced in vitro potency. Biol Chem Hoppe-Seyler 368:709–716

    PubMed  CAS  Google Scholar 

  • Casaretto R (1986) Merrifieldsynthese von [Ala12]-und [Ile12]Insulin-B-Ketten und Kombination mit natürlicher A-Kette. Dissertation, RWTH Aachen

    Google Scholar 

  • Cascieri MA, Chicchi GG, Applebaum J, Hayes NS, Green BG, Bayne ML (1988) Mutants of human insulin-like growth factor I with reduced affinity for the type 1 insulin-like growth factor receptor. Biochemistry 27:3229–3233

    PubMed  CAS  Google Scholar 

  • Chan SJ, Seino S, Gruppuso PA, Schwartz R, Steiner DF (1987) A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia. Proc Natl Acad Sci USA 84:2194–2197

    PubMed  CAS  Google Scholar 

  • Chu Y-C, Burke GT, Chanley JD, Katsoyannis PG (1987a) Possible involvement of the A20-A21 peptide bond in the expression of the biological activity of insulin. 2. [21-Asparagine diethylamide-A] insulin. Biochemistry 26:6972–6975

    PubMed  CAS  Google Scholar 

  • Chu Y-C, Wang R-Y, Burke GT, Chanley JD, Katsoyannis PG (1987b) Possible involvement of the A20–A21 peptide bond in the expression of the biological activity of insulin. 1. [21-Desasparagine, 20-cysteinamide-A]insulin and [21-desasparagine, 20cysteine isopropylamide-A]-insulin. Biochemistry 26:6966–6971

    PubMed  CAS  Google Scholar 

  • Chu Y-C, Wang R-Y, Burke GT, Chanley JD, Katsoyannis PG (1987c) Possible involvement of the A20–A21 peptide bond in the expression of the biological activity of insulin. 3. [21-Desasparagine, 20-cysteine-2, 2, 2-trifluorethylamide-A]insulin. Biochemistry 26:6975–6979

    PubMed  CAS  Google Scholar 

  • Conlon JM, Dafgård E, Falkmer S, Thim L (1986) The primary structure of ratfish insulin reveals an unusual mode of proinsulin processing. FEBS Lett 208:445–450

    PubMed  CAS  Google Scholar 

  • Cutfield JF, Cutfield SM, Carne A, Emdin SO, Falkmer S (1986a) The isolation, purification and amino-acid sequence of insulin from the teleost fish Cottus scorpius (daddy sculpin). Eur J Biochem 158:117–123

    PubMed  CAS  Google Scholar 

  • Cutfield SM, Dodson GG, Ronco N, Cutfield JF (1986b) Preparation and activity of nitrated insulin dimer. Int J Pept Protein Res 27:335–343

    PubMed  CAS  Google Scholar 

  • Davies JG, Offord RE (1985) The preparation of tritiated insulin specifically labelled by semisynthesis at glycine-Al. Biochem J 231:389–392

    PubMed  CAS  Google Scholar 

  • Davies JG, Offord RE (1988) The chemical characterization of the radioactive products derived from [[3H]PheBl] insulin in the circulation of the rat. Biochem J 250:389–393

    PubMed  CAS  Google Scholar 

  • Davies JG, Muir AV, Offord RE (1986) Identification of some cleavage sites of insulin by insulin proteinase. Biochem J 240:609–612

    PubMed  CAS  Google Scholar 

  • Davies JG, Rose K, Bradshaw CG, Offord RE (1987) Enzymatic semisynthesis of insulin specifically labelled with tritium at position B-30. Protein Engineering 1:407–411

    PubMed  CAS  Google Scholar 

  • Dawson DB, Varandani PT (1987) Characterization and application of monoclonal antibodies directed to separate epitopes of glutathione-insulin transhydrogenase. Biochim Biophys Acta 923:389–400

    PubMed  CAS  Google Scholar 

  • De Gasparo M, Faupel M (1986) Chromatographic characterization of adult and foetal rat insulin. J Chromatogr 357:139–146

    PubMed  Google Scholar 

  • Dodson G, Glusker JP, Sayre D (eds) (1981) Structural studies on molecules of biological interest. A volume in honour of Prof. Dorothy Hodgkin. Clarendon, Oxford

    Google Scholar 

  • Drewes SE, Magojo HEM, Gliemann J (1983) (N-Methylpyridinium) insulins. Modification at the Al 9-and B16-tyrosines. Hoppe-Seyler’s Z Physiol Chem 364:461–468

    PubMed  CAS  Google Scholar 

  • Duckworth WC, Hamel FG, Peavy DE, Liepnieks JJ, Ryan MP, Hermodson MA, Frank BH (1988) Degradation products of insulin generated by hepatocytes and by insulin protease. J Biol Chem 263:1826–1833

    PubMed  CAS  Google Scholar 

  • Evans TK, Litthauer D, Oelofsen W (1988) Purification and primary structure of ostrich insulin. Int J Pept Protein Res 31:454–462

    PubMed  CAS  Google Scholar 

  • Fan L, Cui DF, Zhang YS (1985) Enzymatic synthesis of deshexapeptide insulin in the presence of high concentration of 1, 4-butandiol. Chin Biochem J 1:33–36

    CAS  Google Scholar 

  • Ferderigos N, Burke GT, Kitagawa K, Katsoyannis PG (1983) The effect of modifications of the A5 and Al 9 amino acid residues on the biological activity of insulin. [Leu5-A] and [Phel9-A] sheep insulins. J Protein Chem 2:147–170

    CAS  Google Scholar 

  • Finn FM, Titus G, Hofmann K (1984a) Ligands for insulin receptor isolation. Biochemistry 23:2554–2558

    PubMed  CAS  Google Scholar 

  • Finn FM, Titus G, Horstman D, Hofmann K (1984b) Avidin-biotin affinity chromatography: application to the isolation of human placental insulin receptor. Proc Natl Acad Sci USA 81:7328–7332

    PubMed  CAS  Google Scholar 

  • Fischel-Ghodsian F, Brown L, Mathiowitz E, Brandenburg D, Langer R (1988) Enzymati-cally controlled drug delivery. Proc Natl Acad Sci USA 85:2403–2406

    PubMed  CAS  Google Scholar 

  • Fischer WH, Saunders D, Brandenburg D, Wollmer A, Zahn H (1985a) A shortened insulin with full in vitro potency. Biol Chem Hoppe-Seyler 366: 521–525

    PubMed  CAS  Google Scholar 

  • Fischer WH, Saunders DJ, Zahn H, Wollmer A (1985b) Synthesis and properties of a disulphide-bridged insulin dimer. In: Deber CM, Hruby VJ, Kopple KD (eds) Pep-tides, structure and function. Pierce Chem Comp, Rockford, pp 301–304

    Google Scholar 

  • Fischer WH, Saunders D, Brandenburg D, Diaconescu C, Wollmer A, Dodson G, De Meyts P, Zahn H (1986) Structure-function relationships of shortened [LeuB25]insulins, semisynthetic analogues of a mutant human insulin. Biol Chem Hoppe-Seyler 367:999–1006

    PubMed  CAS  Google Scholar 

  • Frank BH, Chance RE (1983) Two routes for producing human insulin utilizing recombinant DNA technology. Münch Med Wochenschr 125 [Suppl 1]:14–20

    CAS  Google Scholar 

  • Galpin IJ, Hancock G, Kenner GW, Morgan BA (1983) The synthesis of an insulin active site analogue. Tetrahedron 39:149–158

    CAS  Google Scholar 

  • Gammeltoft S (1984) Insulin receptors: binding kinetics and structure-function relationship of insulin. Physiol Rev 64:1321–1378

    PubMed  CAS  Google Scholar 

  • Gattner H-G, Sommer M-T (1989) Enzymatic preparation of hydrazides of insulin derivatives as intermediates for chemical syntheses In: König WA, Voelter W (eds) Chemistry of peptides and proteins, vol 4. Attempto, Tübingen, pp 111–117

    Google Scholar 

  • Gattner H-G, Danho W, Knorr R, Naithani VK, Zahn H (1981) Trypsin catalyzed peptide synthesis: modification of the B-chain C-terminal region of insulin. In: Brunfeldt K (ed) Peptides 1980. Scriptor, Copenhagen, pp 372–377

    Google Scholar 

  • Gattner H-G, Danho W, Knorr R, Zahn H (1982) Trypsin catalyzed peptide synthesis: modification of the B-chain C-terminal region of insulin. In: Voelter W, Wünsch E, Ovchinnikov YU, Ivanov V (eds) Chemistry of peptides and proteins, vol 1. De Gruyter, New York, pp 319–325

    Google Scholar 

  • Geiger R, Geisen K, Summ H-D (1982) Austausch von A1-Glycin in Rinderinsulin gegen L-und D-Tryptophan. Hoppe-Seyler’s Z Physiol Chem 363:1231–1239

    PubMed  CAS  Google Scholar 

  • Grant KI, von Holt C (1987) Improved preparation of semisynthetic PheB1-tritiated insulin. Biol Chem Hoppe-Seyler 368:239–248

    PubMed  CAS  Google Scholar 

  • Grau U (1985a) Fingerprint analysis of insulin and proinsulins. Diabetes 34:1174–1180

    PubMed  CAS  Google Scholar 

  • Grau U (1985b) Chemical stability of insulin in a delivery system environment. Diabetologia 28:458–463

    PubMed  CAS  Google Scholar 

  • Grau U, Saudek CD (1987) Stable insulin preparation for implanted insulin pumps. Laboratory and animal trials. Diabetes 36:1453–1459

    CAS  Google Scholar 

  • Halban PA, Rhodes CJ, Shoelson SE (1986) High-performance liquid chromatography (HPLC): a rapid, flexible and sensitive method for separating islet proinsulin and insulin. Diabetologia 29:893–896

    PubMed  CAS  Google Scholar 

  • Halldén G, Gafvelin G, Mutt V, Jörnvall H (1986) Characterization of cat insulin. Arch Biochem Biophys 247:20–27

    PubMed  Google Scholar 

  • Hamel FG, Peavy DE, Ryan MP, Duckworth WC (1987) HPLC analysis of insulin degradation products from isolated hepatocytes. Effects of inhibitors suggest in-tracellular and extracellular pathways. Diabetes 36:702–708

    PubMed  CAS  Google Scholar 

  • Haneda M, Chan SJ, Kwok SCM, Rubenstein AH, Steiner DF (1983) Studies on mutant human insulin genes: identification and sequence analysis of a gene encoding [SerB24]insulin. Proc Natl Acad Sci USA 80:6366–6370

    PubMed  CAS  Google Scholar 

  • Heidenreich KA, Yip CC, Frank BH, Olefsky JM (1985) The preparation and characterization of mono-iodinated photoreactive analogs of insulin. Biochem Biophys Res Commun 126:1138–1145

    PubMed  CAS  Google Scholar 

  • Hellfritzsch M, Christensen EI, Sonne O (1986) Luminal uptake and intracellular transport of insulin in renal proximal tubules. Kidney Int 29:983–988

    PubMed  CAS  Google Scholar 

  • Hofmann K, Zhang WJ, Romovacek H, Finn FM, Bothner-By AA, Mishra PK (1984) Syntheses of biotinylated and dethiobiotinylated insulins. Biochemistry 23:2547–2553

    PubMed  CAS  Google Scholar 

  • Hofmann K, Romovacek H, Titus G, Ridge K, Raffensperger JA, Finn FM (1987) The rat liver insulin receptor. Biochemistry 26:7384–7390

    PubMed  CAS  Google Scholar 

  • Hua Q-X, Qian Y-Q, Tsou C-L (1984) The interaction of the S-thiomethyl insulin A and B chains in solution. Biochim Biophys Acta 789:234–240

    CAS  Google Scholar 

  • Humburg E, Gattner H-G, Zahn H, Brandenburg D Synthesis and characterization of sulfated insulins (in preparation)

    Google Scholar 

  • Inouye K, Watanabe K, Kanaya T, Tochino Y, Kobayashi M, Haneda M, Shigeta Y (1985) Insulin semisynthesis with N’B1-FMOC-DOI as intermediate. In: Izumiya HN (ed) Peptide chemistry 1984. Protein Research Foundation, Osaka, pp 193–198

    Google Scholar 

  • Jakubke H-D (1987) Enzymatic peptide synthesis. In: Udenfried S, Meienhofer J (eds) The peptides: analysis, synthesis, biology, vol 9. Special methods in peptide synthesis, part C. Academic Press, New York, pp 103–165

    Google Scholar 

  • Johnson IS’ (1983) Human insulin from recombinant DNA technology. Science 219:632–637

    PubMed  CAS  Google Scholar 

  • Jones RML, Rose K, Offord RE (1987) Semisynthetic human [[3H2]Phel]proinsulin. Biochem J 247:785–788

    PubMed  CAS  Google Scholar 

  • Joshi S, Burke GT, Katsoyannis PG (1985a) Synthesis of an insulin-like compound consisting of the A chain of insulin and a B chain corresponding to the B domain of human insulin-like growth factor I. Biochemistry 24:4208–4214

    PubMed  CAS  Google Scholar 

  • Joshi S, Ogawa H, Burke GT, Tseng L Y-H, Rechler MM, Katsoyannis PG (1985b) Structural features involved in the biological activity of insulin and the insulin-like growth factors: A27 insulin/B IGF-L Biochem Biophys Res Commun 133:423–429

    PubMed  CAS  Google Scholar 

  • Katsoyannis PG (1964) The synthesis of the insulin chains and their combination to biologically active material. Diabetes 13:339–348

    PubMed  CAS  Google Scholar 

  • Katsoyannis PG, Schwartz GP, Burke GT, Joshi S (1987) Insulin-like growth factors: structure-activity relationships. In: Theodoropoulos D (ed) Peptides 1986. De Gruyter, New York, pp 43–60

    Google Scholar 

  • Keck K, Erb P (eds) (1981) Basic and clinical aspects of immunity to insulin. De Gruyter, New York

    Google Scholar 

  • King GL, Kahn CR, Samuels B, Danho W, Büllesbach EE, Gattner HG (1982) Synthesis and characterization of molecular hybrids of insulin and insulin-like growth factor I. J Biol Chem 257:10869–10873

    PubMed  CAS  Google Scholar 

  • Kitagawa K, Ogawa H, Burke GT, Chanley JD, Katsoyannis PG (1984a) Critical role of the A2 amino acid residue in the biological activity of insulin: [2-Glycine-A]-and [2-Alanine-A]insulins. Biochemistry 23:1405–1413

    PubMed  CAS  Google Scholar 

  • Kitagawa K, Ogawa H, Burke GT, Chanley JD, Katsoyannis PG (1984b) Interaction between the A2 and A19 amino acid residues is of critical importance for high biological activity in insulin: [19-Leucine-A]insulin. Biochemistry 23:4444–4448

    PubMed  CAS  Google Scholar 

  • Knorr R, Danho W, Büllesbach EE, Gattner H-G, Zahn H, King GL, Kahn CR (1982) [B22-D-Arginine]Insulin: synthesis and biological properties. Hoppe Seyler’s Z Physiol Chem 363:1449–1460

    PubMed  CAS  Google Scholar 

  • Knorr R, Danho W, Büllesbach EE, Gattner H-G, Zahn H, King GL, Kahn CR (1983) [B17-D-Leucine]Insulin and [B17-Norleucine]Insulin: synthesis and biological properties. Hoppe-Seyler’s Z Physiol Chem 364:1615–1626

    PubMed  CAS  Google Scholar 

  • Knutson VP (1987) The covalent tagging of the cell surface insulin receptor in intact cells with the generation of an insulin-free, functional receptor. J Biol Chem 262:2374–2383

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohgaku S, Iwasaki M, Maegawa H, Shigeta Y, Inouye K (1982a) Characterization of [LeuB24]-and [LeuB25]-insulin analogues. Biochem J 206:597–603

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohgaku S, Iwasaki M, Maegawa H, Shigeta Y, Inouye K (1982b) Supernormal insulin: [D-PheB24]-insulin with increased affinity for insulin receptors. Biochem Biophys Res Commun 107:329–336

    PubMed  CAS  Google Scholar 

  • Kubiak T, Cowburn D (1986a) Enzymatic semisynthesis of porcine despentapeptide (B26-30)insulin using unprotected desoctapeptide (B26–B30)insulin as a substrate. Int J Pept Protein Res 27:514–521

    PubMed  CAS  Google Scholar 

  • Kubiak T, Cowburn D (1986b) Trypsin-catalysed formation of pig des-(23–63)-proinsulin fromdesoctapeptide-(B23–30)-insulin. Biochem J 234:665–670

    PubMed  CAS  Google Scholar 

  • Kwok SCM, Steiner DF, Rubenstein AH, Tager HS (1983) Identification of a point mutation in the human insulin gene giving rise to a structurally abnormal insulin (insulin Chicago). Diabetes 32:872–875

    PubMed  CAS  Google Scholar 

  • Li CH, Yamashiro D, Gospodarowicz D, Kaplan SL, van Vliet G (1983) Total synthesis of insulin-like growth factor I (somatomedin C). Proc Natl Acad Sci USA 80:2216–2220

    PubMed  CAS  Google Scholar 

  • Linde S, Welinder BS, Hansen B, Sonne O (1986) Preparative reversed-phase high-performance liquid chromatography of iodinated insulin retaining full biological activity. J Chromatogr 369:327–339

    PubMed  CAS  Google Scholar 

  • Lloyd LF, Calam DH (1982) Separation of human insulin and some structural isomers by high-performance liquid chromatography. J Chromatogr 237:511–514

    CAS  Google Scholar 

  • Lloyd LF, Corran PH (1982) Analysis of insulin preparations by reversed-phase high-performance liquid chromatography. J Chromatogr 240:445–454

    CAS  Google Scholar 

  • Losse G, Raddatz H (1987) Synthese von B1-substituierten Peptidyl-Insulinen. J Prakt Chem 329:1–9

    CAS  Google Scholar 

  • Losse G, Richter B, Naumann W, Mätzler G (1982) Neue bifunktionelle Brückenfunktionen zur A1–B29-Verklammerung der beiden Insulinketten. J Prakt Chem 324:993–1004

    CAS  Google Scholar 

  • Lougheed WD, Albisser AM, Martindale HM, Chow JC, Clement JR (1983) Physical stability of insulin formulations. Diabetes 32:424–432

    PubMed  CAS  Google Scholar 

  • Markussen J (1985) Comparative reduction/oxidation studies with single chain des-(B30) insulin and porcine proinsulin. Int J Pept Protein Res 25:431–434

    PubMed  CAS  Google Scholar 

  • Markussen J (1987) Human insulin by tryptic transpeptidation of porcine insulin and biosynthetic precursors. MTP, Lancaster

    Google Scholar 

  • Markussen J, Jørgensen KH, Sørensen AR, Thim L (1985) Single chain des-(B30)insulin. Int J Pept Protein Res 26:70–77

    PubMed  CAS  Google Scholar 

  • Markussen J, Diers I, Engesgaard A, Hansen MT, Hougaard P, Langkjaer L, Noms K, Ribel U, Sørensen AR, Søerensen E, Voigt HO (1987a) Soluble, prolonged-acting insulin derivatives. II. Degree of protraction and crystallizability of insulins substituted in positions A17, B8, B13, B27, and B30. Protein Engineering 1:215–223

    CAS  Google Scholar 

  • Markussen J, Hougaard P, Ribel U, Sorensen AR, Sørensen E (1987b) Soluble, prolonged-acting insulin derivatives. I. Degree of protraction and crystallizability of insulins substituted in the termini of the B-chain. Protein Engineering 1:205–213

    PubMed  CAS  Google Scholar 

  • Markussen J, Diers I, Hougaard P, Langkjaer L, Noms K, Snel L, Sørensen AR, Sørensen E, Voigt HO (1988) Soluble, prolonged-acting insulin derivatives. III. Degree of protaction, crystallizability and chemical stability of insulins substituted in positions A21, B13, B23, B27, and B30. Protein Engineering 2:157–166

    PubMed  CAS  Google Scholar 

  • Marsh JW, Nahum A, Steiner DF (1983) Reductive methylation of insulin. Int J Pept Protein Res 22:39–49

    PubMed  CAS  Google Scholar 

  • Massague J, Czech MP (1985) Affinity cross-linking of receptors for insulin and the insulin-like growth factors I and II. Methods Enzymol 109:179–187

    CAS  Google Scholar 

  • McLeod A, Wood SP (1984) High-performance liquid chromatography of insulin. J Chromatogr 285:319–331

    PubMed  CAS  Google Scholar 

  • Meienhofer J, Schnabel E, Bremer H, Brinkhoff O, Zabel R, Sroka W, Klostermeyer H, Brandenburg D, Okuda T, Zahn H (1963) Synthese der Insulinketten und ihre Kombination zu insulinaktiven Präparaten. Z Naturforsch 18B: 1120–1121

    CAS  Google Scholar 

  • Misbin RI, Almira EC, Buynitzky SJ (1983) Insulin metabolism in rat hepatocytes. J Biol Chem 258:2157–2162

    PubMed  CAS  Google Scholar 

  • Morihara K, Ueno Y, Sakina K (1986) Influence of temperature in the enzymic semi-synthesis of human insulin by coupling and transpeptidation methods. Biochem J 240:803–810

    PubMed  CAS  Google Scholar 

  • Muir A, Offord RE, Davies JG (1986) The identification of a major product of the degradation of insulin by “insulin proteinase” (EC 3.4.22.11). Biochem J 237:631–637

    PubMed  CAS  Google Scholar 

  • Naithani VK, Gattner H-G (1982) Preparation and properties of citraconylinsulins. Hoppe-Seyler’s Z Physiol Chem 363:1443–1448

    PubMed  CAS  Google Scholar 

  • Naithani VK, Zahn H (1984) Synthesis of proinsulin. In: Hearn MTW (ed) Peptide and protein reviews, vol 3. Dekker, New York, pp 81–146

    Google Scholar 

  • Nakagawa SH, Tager HS (1986) Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor. J Biol Chem 261:7332–7341

    PubMed  CAS  Google Scholar 

  • Nakagawa SH, Tager HS (1987) Role of the COOH-terminal B-chain domain in insulin-receptor interactions. J Biol Chem 262:12054–12058

    PubMed  CAS  Google Scholar 

  • Nanjo K, Sänke T, Miyano M, Okai K, Sowa R, Kondo M, Nishimura S, Iwo K, Miyamura K, Given BD, Chan SJ, Tager HS, Steiner DF, Rubenstein AH (1986) Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3]insulin. J Clin Invest 77:514–519

    PubMed  CAS  Google Scholar 

  • Ng DS, Yip CC (1985) Peptide mapping of the insulin-binding site of the 130-kDa subunit of the insulin receptor by means of a novel cleavable radioactive photoprobe. Biochem Biophys Res Commun 133:154–160

    PubMed  CAS  Google Scholar 

  • Obermeier R, Seipke G (1984) Enzyme-catalyzed semisyntheses with porcine insulin. Process Biochem 19:29–32

    Google Scholar 

  • Offord RE (1980) Semisynthetic proteins. Wiley, Chichester New York Brisbane

    Google Scholar 

  • Ogawa H, Burke GT, Katsoyannis PG (1984) Synthesis and biological evaluation of a modified insulin incorporating the COOH-terminal hexapeptide (“D-region”) of insulin-like growth factor IL J Protein Chem 3:327–348

    CAS  Google Scholar 

  • Ogawa H, Burke GT, Chanley JD, Katsoyannis PG (1987) Effect of N-methylation of selected peptide bonds on the biological activity of insulin. Int J Pept Protein Res 30:460–473

    PubMed  CAS  Google Scholar 

  • Otha N, Burke GT, Katsoyannis PG (1988) Synthesis of an insulin analogue embodying a strongly fluorescent moiety, [19-Tryptophan-A]insulin. J Protein Chem 7:55–65

    Google Scholar 

  • Pang DT, Shafer JA (1983) Stoichiometry for the binding of insulin to insulin receptors in adipocyte membranes. J Biol Chem 258:2514–2518

    PubMed  CAS  Google Scholar 

  • Petersen K-G, Schlüter KJ, Kerp L (eds) (1982) Neue Insuline. 1. Internationales Symposium, 4.-5. Dezember 1981, Freiburg

    Google Scholar 

  • Pongor S, Brownlee M, Cerami A (1983) Preparation of high-potency, non-aggregating insulins using a novel sulfation procedure. Diabetes 32:1087–1091

    PubMed  CAS  Google Scholar 

  • Riemen MW, Pon LA, Carpenter FH (1983) Preparation of semisynthetic insulin analogues from bis(tert-butyl-oxycarbonyl)-desoctapeptide-insulin phenylhydrazide: importance of the aromatic region B24-B26. Biochemistry 22:1507–1515

    PubMed  CAS  Google Scholar 

  • Riemen MW, Hosoume JT, Hillyard NA, Allen MP, Carpenter FH (1985) Semisynthetic insulin analogs: substitution for Gly-B23 significantly alters the activity of destetrapeptide-insulin. In: Deber CM, Hruby VJ, Kopple KD (eds) Peptides 1985. Pierce Chem Comp, Rockford, pp 699–702

    Google Scholar 

  • Rivier J, McClintock R (1983) Reversed-phase high-performance liquid chromatography of insulins from different species. J Chromatogr 268:112–119

    PubMed  CAS  Google Scholar 

  • Rose K, De Pury H, Offord RE (1983) Rapid preparation of human insulin and insulin analogues in high yield by enzyme-assisted semi-synthesis. Biochem J 211:671–676

    PubMed  CAS  Google Scholar 

  • Rose K, Gladstone J, Offord RE (1984a) A mass-spectrometric investigation of the mechanism of the semisynthetic transformation of pig insulin into an ester of insulin of human sequence. Biochem J 220:189–196

    PubMed  CAS  Google Scholar 

  • Rose K, Pochon S, Offord R (1984b) Oxygen-18 labeled human insulin: semisynthesis and mass-spectrometric analysis. In: Ragnarsson U (ed) Peptides 1984. Almqvist and Wik-sell, Stockhohn, pp 235–238

    Google Scholar 

  • Roth RA, Maddux B (1983) Insulin-cholera toxin binding unit conjugate: a hybrid molecule with insulin biological activity and cholera toxin binding specificity. J Cell Physiol 115:151–158

    PubMed  CAS  Google Scholar 

  • Roth RA, Iwamoto Y, Maddux B, Golfine ID (1983) Insulin-ricin B chain conjugate has enhanced biological activity in insulin-insensitive cells. Endocrinology 112:2193–2199

    PubMed  CAS  Google Scholar 

  • Sakina K, Ueno Y, Oka T, Morihara K (1986) Enzymatic semisynthesis of [Leu B30]insulin. Int J Pept Protein Res 28:411–19

    PubMed  CAS  Google Scholar 

  • Sakura H, Iwamoto Y, Sakamoto Y, Kuzuya T, Hirata H (1986) Structurally abnormal insulin in a diabetic patient — characterization of the mutant insulin A3 (Val → Leu) isolated from the pancreas. J Clin Invest 78:1666–1672

    PubMed  CAS  Google Scholar 

  • Sato S, Ebert CD, Kim SW (1983) Prevention of insulin self-association and surface adsorption. J Pharm Sci 72:228–232

    PubMed  CAS  Google Scholar 

  • Saunders D, Freude K (1982) Cross-linked [D-AlaA1]insulins. Evidence for a change in the conformation of the insulin monomer at its receptor. Hoppe Seyler’s Z Physiol Chem 363:655–659

    PubMed  CAS  Google Scholar 

  • Saunders DJ, Brandenburg D (1984) Photoactivatable insulins and receptor photoaffmity labelling. In: Larner J, Pohl S (eds) Methods in diabetes research, vol I: laboratory methods, pt A. Wiley, New York, pp 3–22

    Google Scholar 

  • Schartmann B, Gattner H-G, Danho W, Zahn H (1983) Erhöhte Insulinausbeuten durch “Recycling” der nichtkombinierten Ketten. Hoppe-Seyler’s Z Physiol Chem 364:179–186

    PubMed  CAS  Google Scholar 

  • Schüttler A, Brandenburg D (1982) Preparation and properties of covalently linked insulin dimers. Hoppe Seyler’s Z Physiol Chem 363:317–330

    PubMed  Google Scholar 

  • Schüttler A, Gattner H-G, Brandenburg D (1984) Preparation of selected insulin derivatives and analogues. In: Larner J, Pohl S (eds) Methods in diabetes research, vol I: Laboratory methods, pt A. Wiley, New York, pp 355–376

    Google Scholar 

  • Schwartz G, Burke GT, Katsoyannis PG (1982) The importance of the B10 amino acid residue to the biological activity of insulin. [Lys10-B] Human insulin. J Protein Chem 1:177–189

    CAS  Google Scholar 

  • Schwartz GP, Burke GT, Chanley JD, Katsoyannis PG (1983) An insulin analogue possessing higher in vitro biological activity than receptor binding affinity. [21-Proline-B]insulin. Biochemistry 22:4561–4567

    PubMed  CAS  Google Scholar 

  • Schwartz GP, Wong D, Burke GT, De Vroede MA, Rechler MM, Katsoyannis PG (1985) Glutamine B16 insulin: reduced insulin-like metabolic activity with moderately preserved mitogenic activity. J Protein Chem 4:185–197

    CAS  Google Scholar 

  • Schwartz GP, Burke GT, Katsoyannis PG (1987) A superactive insulin: [B10-Aspartic acid]insulin (human). Proc Natl Acad Sci USA 84:6408–6411

    PubMed  CAS  Google Scholar 

  • Seino S, Steiner DF, Bell GI (1987) Sequence of a New World primate insulin having low biological potency and immunoreactivity. Proc Natl Acad Sci USA 84:7423–7427

    PubMed  CAS  Google Scholar 

  • Selam J-L, Zirinis P, Mellet M, Mirouze J (1987) Stable insulin for implantable delivery systems: in vitro studies with different containers and solvents. Diabetes Care 10:343–347

    PubMed  CAS  Google Scholar 

  • Shoelson S, Fickova M, Haneda M, Nahum A, Musso G, Kaiser ET, Rubenstein AH, Tager H (1983a) Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution. Proc Natl Acad Sci USA 80:7390–7394

    PubMed  CAS  Google Scholar 

  • Shoelson S, Haneda M, Blix P, Nanjo A, Sanke T, Inouye K, Steiner D, Rubenstein A, Tager H (1983b) Three mutant insulins in man. Nature 302:540–543

    PubMed  CAS  Google Scholar 

  • Sodoyez JC, Sodoyez-Goffaux F, Guillaume M, Merchie G (1983) [123I]Insulin metabolism in normal rats and humans: external detection by a scintillation camera. Science 219:865–867

    PubMed  CAS  Google Scholar 

  • Sonne O (1987) Receptor-mediated degradation of insulin in isolated rat adipocytes. Formation of a degradation product slightly smaller than insulin. Biochim Biophys Acta 927:106–111

    CAS  Google Scholar 

  • Sonne O, Linde S, Larsen TR, Gliemann J, Larso L (1983) Monoiodoinsulin labelled in tyrosine residue 16 or 26 of the B-chain or 19 of the A-chain. Hoppe Seyler’s Z Physiol Chem 364:101–110

    PubMed  CAS  Google Scholar 

  • Srinivasa BR, Carpenter FH (1983) Intramolecular cross-linking of insulin. Int J Pept Protein Res 22:214–222

    PubMed  CAS  Google Scholar 

  • Stoev S, Zakhariev S, Golovinsky E, Gattner H-G, Naithani VK, Wollmer A, Brandenburg D (1988) Synthesis and properties of [A19-(p-fluorophenylalanine)] insulin. Biol Chem Hoppe-Seyler 369:1307–1315

    PubMed  CAS  Google Scholar 

  • Tatnell MA, Jones RH, Willey KP, Schüttler A, Brandenburg D (1983) Evidence concerning the mechanism of insulin-receptor interaction and the structure of the insulin receptor from biological properties of covalently linked insulin dimers. Biochem J 216:687–694

    PubMed  CAS  Google Scholar 

  • Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, Ammerer G, Fiil NP (1986) Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci USA 83:6766–6770

    PubMed  CAS  Google Scholar 

  • Tian Y, Wang C-C, Tsou C-L (1987) Interaction and combination of separate A and B chains of insulin. Effects of D-and L-tryptophan in position A1. Biol Chem Hoppe-Seyler’s 368:397–403

    CAS  Google Scholar 

  • Trindler P, Brandenburg D (1982) Semisynthetic modification of the N-terminus of the insulin A-chain. In: Voelter W, Wünsch E, Ovchinnikov Yu, Ivanov V (eds) Chemistry of peptides and proteins, vol 1. De Gruyter, New York, pp 307–314

    Google Scholar 

  • Varley JM, Davies JG, Shire D, Offord RE, Tirnmis KN (1988) Engineered rat I insulin analogue having a B16Tyr/Asp replacement exhibits unchanged susceptibility to cleavage by insulin proteinase. Eur J Biochem 171:351–354

    PubMed  CAS  Google Scholar 

  • Vigh Gy, Varga-Puchony Z, Szepesi G, Gazdag M (1987) Semi-preparative high-performance reversed-phase displacement chromatography of insulins. J Chromatogr 386:353–362

    PubMed  CAS  Google Scholar 

  • Wang C-C, Tsou C-L (1986) Interaction and reconstitution of carboxyl-terminal-shortened B chains with the intact A chain of insulin. Biochemistry 25:5336–5340

    PubMed  CAS  Google Scholar 

  • Wedekind F, Baer-Pontzen K, Bala-Mohan S, Choli D, Zahn H, Brandenburg D (1989) Hormone binding site of the insulin receptor: analysis using photoaffinity-mediated avidin complexing. Biol Chem Hoppe-Seyler 370:251–258

    PubMed  CAS  Google Scholar 

  • Welinder BS, Linde S, Hansen B (1984) Isolation of specific labeled insulin tracers. Comparison between RP-HPLC and disc electrophoresis — ion exchange chromatography. In: Larner J, Pohl S (eds) Methods in diabetes res, vol 1: laboratory methods, pt B. Wiley, New York, pp 341–354

    Google Scholar 

  • Wieneke H-J, Wolf G, Wolff W, Büllesbach EE, Gattner H-G, Brandenburg D (1983a) Synthesis of a hybrid chicken/human insulin. In: Bláha K, Maloň P (eds) Peptides 1982. De Gruyter, New York, pp 367–370

    Google Scholar 

  • Wieneke H-J, Danho W, Büllesbach EE, Gattner H-G, Zahn H (1983b) The synthesis of [A19-3-iodotyrosine] and [A19–3, 5-diiodotyrosine]-insulin (porcine). Hoppe-Seyler’s Z Physiol Chem 364:537–550

    PubMed  CAS  Google Scholar 

  • Yip CC, Yeung CWT (1985) Photoaffmity labelling of the insulin receptor. Methods En-zymol 109:170–179

    CAS  Google Scholar 

  • Zahn H (1983) Insulin: Von der Strukturaufklärung zur chemischen Synthese. Münch Med Wochenschr 125 [Suppl 1]:3–13

    CAS  Google Scholar 

  • Zaitsu K, Hosoya H, Hayashi Y, Yamada H, Ohkura Y (1985) High-performance liquid Chromatographic separation of citraconylinsulins and preparation of GlyA1PheB1-dicitraconylinsulin. Chem Pharm Bull 33:1159–1163

    PubMed  CAS  Google Scholar 

  • Zhang Y-S, Cao Q-P, Li Z-G, Cui D-F (1983) Preparation of [B23-D-alanine]des-(B25–B30)-hexapeptide-insulin by a combination of enzymic and non-enzymic synthesis. Biochem J 215:697–699

    PubMed  CAS  Google Scholar 

  • Zhu S-Q (1985) Studies on structure and biological activity of insulin. In: Molecular architecture of proteins and enzymes. Academic Press, New York, pp 185-197

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brandenburg, D. (1990). Insulin Chemistry. In: Cuatrecasas, P., Jacobs, S. (eds) Insulin. Handbook of Experimental Pharmacology, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74098-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74098-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74100-5

  • Online ISBN: 978-3-642-74098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics