Advertisement

Ribosomal Changes Resulting in Antimicrobial Resistance

  • H. Hummel
  • A. Böck
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 91)

Abstract

Numerous antibiotics inhibit growth of prokaryotic and/or eukaryotic cells by specifically interfering with protein synthesis, either at the level of soluble protein synthesis factors or at the ribosome. The response of susceptible cells to these compounds may be altered by mutational changes of the primary structure of some component of the translational system or by the enzymatic activity of a gene product which introduces a covalent modification at a specific site. The analysis of such changes has been of eminent importance both for elucidating the mechanism of action of the antibiotics themselves and for understanding the genetic organization, the synthesis and the function of the translational system: (i) The first genes coding for ribosomal proteins were localized with the help of streptomycin-, erythromycin- and spectinomycin-resistant mutants from E. coli (for review see Nomura et al. 1977). Antibiotic resistance mutations were also indispensable tools for cloning the respective genes and for studying their structure and expression. (ii) Antibiotics have been extremely useful in the delineation of the different partial reactions of the translation process. Thus, the isolation and structural characterization of an antibiotic resistant mutant in several instances permitted the correlation of the biochemical reaction, which is blocked by that compound, with a specific site or component of the ribosome. (iii) Many protein synthesis inhibitors are specific either for the 70S eubacterial or the 80S cytoplasmic eukaryotic ribosome. There is increasing evidence which suggests that the structural changes of ribosomal components with occur as a consequence of antibiotic resistance mutations parallel the evolutionary changes differentiating susceptible and non-susceptible cell lineages (Hummel et al. 1986).

Keywords

Ribosomal Protein Antimicrob Agent Ribosomal Subunit Amino Acid Replacement Translational Fidelity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad MH, Rechenmacher A, Böck A (1980) Interaction between aminoglycoside uptake and ribosomal resistance mutation. Antimicrob Agents Chemother 18: 798–806PubMedGoogle Scholar
  2. Amils R, Sanz JL (1986) Inhibitors of protein synthesis as phylogenetic markers. In: Hardesty B, Kramer G (eds) Structure, function, and genetics of ribosomes. Springer, Berlin Heidelberg New York, Tokyo, p 605Google Scholar
  3. Anderson RP, Menninger JR (1987) Tests of the ribosome editor hypothesis. III. A mutant Escherichia coli with a defective ribosome editor. Mol Gen Genet 209: 313–318PubMedGoogle Scholar
  4. Apirion D, Saltzman L (1974) Functional interdependence of 50S and 30S ribosomal subunits. Mol Gen Genet 135: 11–18PubMedGoogle Scholar
  5. Apirion D, Schlessinger D (1968) Coresistance to neomycin and kanamycin by mutations in an Escherichia coli locus that affects ribosomes. J Bacteriol 96: 768–776PubMedGoogle Scholar
  6. Beauclerk AAD, Cundliffe E (1987) Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol 193: 661–671PubMedGoogle Scholar
  7. Beauclerk AAD, Cundliffe E, Dijk J (1984) The binding site for ribosomal protein complex L8 within 23S ribosomal RNA of Escherichia coli. J Biol Chem 259: 6559–6563PubMedGoogle Scholar
  8. Beauclerk AAD, Hummel H, Holmes DJ, Böck A, Cundliffe E (1985) Studies of the GTPase domain of archaebacterial ribosomes. Eur J Biochem 151: 245–255PubMedGoogle Scholar
  9. Bégueret J, Perrot M, Crouzet M (1977) Ribosomal proteins in the fungus Podospora anserina: evidence for an electrophoretically altered 60S protein in a cycloheximide resistant mutant. Mol Gen Genet 156: 141–144PubMedGoogle Scholar
  10. Bibb MJ, van Etten RA, Wright CT, Warberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180PubMedGoogle Scholar
  11. Birge EG, Kurland CG (1969) Altered ribosomal protein in streptomycin-dependent Escherichia coli. Science 166: 1282–1284PubMedGoogle Scholar
  12. Bjare U, Gorini L (1971) Drug dependence reversed by a ribosomal ambiguity mutation, ram, in Escherichia coli. J Mol Biol 57: 423–435PubMedGoogle Scholar
  13. Blanc H, Adams CA, Wallace DC (1981) Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines. Nucleic Acids Res 9: 5785–5795PubMedGoogle Scholar
  14. Böck A, Kandler O (1985) Antibiotic sensitivity of archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria VIII. Archaebacteria. Academic, New York, p 525Google Scholar
  15. Böck A, Petzet A, Piepersberg W (1979) Ribosomal ambiguity (ram) mutations facilitate dihydrostreptomycin binding to ribosomes. FEBS Lett 104: 317–321PubMedGoogle Scholar
  16. Böck A, Turnowsky F, Högenauer G (1982) Tiamulin resistance mutations in Escherichia coli. J Bacteriol 151: 1253–1260PubMedGoogle Scholar
  17. Böck A, Bär U, Schmid G, Hummel H (1983) Aminoglycoside sensitivity of ribosomes from the archaebacterium Methanococcus vannielii: structure-activity relationship. FEMS Microbiol Lett 20: 435–438Google Scholar
  18. Boersma D, McGill SM, Mollenkamp JW, Roufa DJ (1979a) Emetine resistance in Chinese hamster cells. Analysis of ribosomal proteins prepared from mutant cells. J Biol Chem 254: 559–567PubMedGoogle Scholar
  19. Boersma D, McGill SM, Mollenkamp JW, Roufa DJ (1979b) Emetine resistance in Chinese hamster cells is linked genetically with an altered 40S ribosomal subunit protein, S20. Proc Natl Acad Sci USA 76: 415–419PubMedGoogle Scholar
  20. Bollen A, Davies J, Ozaki M, Mizushima S (1969) Ribosomal protein conferring sensitivity to the antibiotic spectinomycin in Escherichia coli. Science 165: 85–86PubMedGoogle Scholar
  21. Bollen A, Cabezón T, de Wilde M, Villarroel R, Herzog A (1975) Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. I. General properties of neaA mutants. J Mol Biol 99: 795–806PubMedGoogle Scholar
  22. Bowman CM, Dahlberg JE, Ikemura T, Konisky J, Nomura M (1971) Specific inactivation of 16S ribosomal RNA induced by Colicin E3 in vivo. Proc Natl Acad Sci USA 68: 964–968PubMedGoogle Scholar
  23. Brosius J, Palmer ML, Kennedy JP, Noller HF (1978) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. Proc Natl Acad Sci USA 75: 4801–4805PubMedGoogle Scholar
  24. Bryan LE (1982) Bacterial resistance and susceptibility to chemotherapeutic agents. Cambridge University Press, CambridgeGoogle Scholar
  25. Bryan LE, van den Elzen HM (1975) Gentamicin accumulation by sensitive strains of Escherichia coli and Pseudomonas aeruginosa. J Antibiot 28: 696–703PubMedGoogle Scholar
  26. Bryan LE, van den Elzen (1976) Streptomycin accumulation in susceptible and resistant strains of Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 9: 928–938PubMedGoogle Scholar
  27. Bryan LE, van den Elzen HM (1977) Effects of membrane-energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother 12: 163–177PubMedGoogle Scholar
  28. Buckel P, Buchberger A, Böck A, Wittmann HG (1977) Alteration of ribosomal protein L6 in mutants of Escherichia coli resistant to gentamicin. Mol Gen Genet 158: 47–54PubMedGoogle Scholar
  29. Burdett V (1986) Streptococcal tetracycline resistance mediated at the level of protein synthesis. J Bacteriol 165: 564–569PubMedGoogle Scholar
  30. Chang FN, Flaks JG (1972) Binding of dihydrostreptomycin to Escherichia coli ribosomes. Characteristics and equilibrium of the reaction. Antimicrob Agents Chemother 2: 294–307PubMedGoogle Scholar
  31. Chang YL, Gutell R, Noller H, Wool IG (1984) The nucleotide sequence of a rat 18S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18S ribosomal ribonucleic acid. J Biol Chem 259: 224–230Google Scholar
  32. Clewell DB (1981) Plasmids, drug resistance, and gene transfer in the genus Streptococcus. Microbiol Rev 45: 409–436PubMedGoogle Scholar
  33. Coddington A, Fluri R (1977) Characterization of the ribosomal proteins from Schizosaccharomyces pombe by two-dimensional polyacrylamide gel electrophoresis. Mol Gen Genet 158: 93–100PubMedGoogle Scholar
  34. Cooperman BS (1980) Functional sites on the E. coli ribosome as defined by affinity labeling. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes. Structure, function, and genetics. University Park Press, Baltimore, p 531Google Scholar
  35. Crouzet M, Bégueret J (1982) Altered ribosomal proteins in emetine resistant strains in the fungus Podospora anserina. Curr Genet 6: 39–42Google Scholar
  36. Cundliffe E (1983) Antibiotics as probes of ribosomal structure and function. In: Edwards DI, Hiscock DR (eds) Chemotherapeutic strategy. Macmillan, London, p 65Google Scholar
  37. Cundliffe E (1986) Involvement of specific portions of ribosomal RNA in defined ribosomal functions: a study utilizing antibiotics. In: Hardesty B, Kramer G (eds) Structure, function, and genetics of ribosomes. Springer, Berlin Heidelberg New York, Tokyo, p 586Google Scholar
  38. Cundliffe E, Thompson J (1979) Ribose methylation and resistance to thiostrepton. Nature 278: 859–861PubMedGoogle Scholar
  39. Cundliffe E, Thompson J (1981) Concerning the mode of action of micrococcin upon bacterial protein synthesis. Eur J Biochem 118: 47–52PubMedGoogle Scholar
  40. Cundliffe E, Dixon P, Stark M, Stöffler G, Ehrlich R, Stöffier-Meilicke M, Cannon M (1979) Ribosomes in thiostrepton-resistant mutants of Bacillus megaterium lacking a single 50S subunit protein. J Mol Biol 132: 235–252PubMedGoogle Scholar
  41. Dabbs Ell (1977) A spectinomycin dependent mutant of Escherichia coli. Mol Gen Genet 151: 261–267Google Scholar
  42. Dabbs ER (1978a) Kasugamycin-dependent mutants of Escherichia coli. J Bacteriol 136: 994–1001PubMedGoogle Scholar
  43. Dabbs ER (1978b) Mutational alterations in 50 proteins of the Escherichia coli ribosome. Mol Gen Genet 165: 73–78PubMedGoogle Scholar
  44. Dabbs ER, Wittmann HG (1976) A strain of Escherichia coli which gives rise to mutations in a large number of ribosomal proteins. Mol Gen Genet 149: 303–309PubMedGoogle Scholar
  45. Dabbs ER, Poldermans B, Bakker H, van Knippenberg PH (1980) Biochemical characterization of ribosomes of kasugamycin-dependent mutants of Escherichia coli. FEBS Lett 117: 164–166PubMedGoogle Scholar
  46. Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51: 341–350PubMedGoogle Scholar
  47. Dekio S, Tanaka R (1969) Genetic studies of the ribosomal proteins in Escherichia coli. II. Altered 30S ribosomal protein component specific to spectinomycin resistant mutants. Mol Gen Genet 105: 219–224PubMedGoogle Scholar
  48. Dekio S, Takata R, Osawa S, Tanaka K, Tanaki M (1970) Genetic studies of the ribosomal proteins in Escherichia coli. IV. Pattern of the alterations of ribosomal protein components in mutants resistant to spectinomycin or erythromycin in different strains of Escherichia coli. Mol Gen Genet 107: 39–49PubMedGoogle Scholar
  49. Dequard-Chablat M, Coppin-Raynal E (1984) Increase of translational fidelity blocks sporulation in the fungus Podospora anserina. Mol Gen Genet 195: 294–299Google Scholar
  50. De Wilde M, Cabezón T, Villarroel R, Herzog A, Bollen A (1975) Cooperative control of translational fidelity by ribosomal proteins in Escherichia coli. I. Properties of ribosomal mutants whose resistance to neamine is the cumulative effect of two distinct mutations. Mol Gen Genet 142: 19–33PubMedGoogle Scholar
  51. Dombou M, Mizuno T, Mizushima S (1977) Interaction of the cytoplasmic membrane and ribosomes in Escherichia coli: altered ribosomal proteins in sucrose-dependent spectinomycin-resistant mutants. Mol Gen Genet 155: 53–60PubMedGoogle Scholar
  52. Douthwaite S, Prince JB, Noller HF (1985) Evidence for functional interaction between domain II and V of 23S ribosomal RNA from an erythromycin-resistant mutant. Proc Natl Acad Sci USA 82: 8330–8334PubMedGoogle Scholar
  53. Dujon B (1980) Sequences of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the W and rib-1 loci. Cell 20: 185–197PubMedGoogle Scholar
  54. Ettayebi M, Prasad SM, Morgan EA (1985) Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J Bacteriol 162: 551–557PubMedGoogle Scholar
  55. Etzold T, Fritz CC, Schell J, Schreier PH (1987) A point mutation in the chloroplast 16S rRNA gene of a streptomycin resistant Nicotiana tabacum. FEBS Lett 219: 343–346Google Scholar
  56. Fernandez-Munoz R, Monro RE, Torres-Pinedo R, Vazquez D (1971) Substrate-and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol, lincomycin and erythromycin sites. Eur J Biochem 23: 185–193PubMedGoogle Scholar
  57. Foster TJ (1983) Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev 47: 361–409PubMedGoogle Scholar
  58. Fox GE, Magrum LJ, Balch WE, Wolfe RS, Woese CR (1977) Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci USA 74: 4537–4541PubMedGoogle Scholar
  59. Fried HM, Warner JR (1981) Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc Natl Acad Sci USA 78: 238–242PubMedGoogle Scholar
  60. Funatsu G, Schiltz E, Wittmann HG (1971) Ribosomal proteins XXVII. Localization of the amino acid exchanges in protein S5 from two Escherichia coli mutants resistant to spectinomycin. Mol Gen Genet 114: 106–111Google Scholar
  61. Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Warning MJ (1981) The molecular basis of antibiotic action, 2nd edn. Wiley, LondonGoogle Scholar
  62. Garvin RT, Rosset R, Gorini L (1973) Ribosomal assembly influenced by growth in the presence of streptomycin. Proc Natl Acad Sci USA 70: 2762–2766PubMedGoogle Scholar
  63. Garvin RT, Biswas DK, Gorini L (1974) The effects of streptomycin or dihydrostreptomycin binding to 16S rRNA or to 30S ribosomal subunits. Proc Natl Acad Sci USA 71: 3814–3818PubMedGoogle Scholar
  64. Georgiev OI, Nikolaev N, Hadjiolov AA, Skryabin KG, Zakharyev VM, Bayev AA (1981) The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25S rRNA gene from Saccharomyces cerevisiae. Nucleic Acids Res 9: 6953–6958PubMedGoogle Scholar
  65. Gorini L (1974) Streptomycin and misreading of the genetic code. In: Nomura M, Tissières A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Laboratory, New York, p 791Google Scholar
  66. Gorini L, Rosset R, Zimmermann RA (1967) Phenotypic masking and streptomycin dependence. Science 157: 1314–1317PubMedGoogle Scholar
  67. Grant P, Sanchez, Jiménez A (1974) Cryptopleurine resistance: genetic locus for a 40S ribosomal component in Saccharomyces cerevisiae. J Bacteriol 120: 1308–1314PubMedGoogle Scholar
  68. Grant PG, Schindler D, Davies JE (1976) Mapping of trichodermin resistance in Saccharomyces cerevisiae: a genetic locus for a component of the 60S ribosomal subunit. Genetics 83: 667–673PubMedGoogle Scholar
  69. Gupta RS, Siminovitch L (1977a) Mutants of CHO cells resistant to the protein synthesis inhibitors, cryptopleurine and tylocrebrine: genetic and biochemical evidence for common site of action of emetine, cryptopleurine, tylocrebrine, and tubulosine. Biochemistry 16: 3209–3214PubMedGoogle Scholar
  70. Gupta RS, Siminovitch L (1977b) The molecular basis of emetine resistance in Chinese hamster ovary cells: alteration in the 40S ribosomal subunit. Cell 10: 61–66PubMedGoogle Scholar
  71. Gupta R, Lanter JM, Woese CR (1983) Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium. Science 221: 656–659PubMedGoogle Scholar
  72. Hancock REW (1981a) Aminoglycoside uptake and mode of action–with special reference to streptomycin and gentamicin. I. Antagonists and mutants. J Antimicrob Chemother 8: 249–276PubMedGoogle Scholar
  73. Hancock REW (1981b) Aminoglycoside uptake and mode of action — with special reference to streptomycin and gentamicin. II. Effects of aminoglycosides on cells. J Antimicrob Chemother 8: 429–445PubMedGoogle Scholar
  74. Heiser TL, Davies JE, Dahlberg JE (1971) Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nature New Biol 233: 12–14Google Scholar
  75. Henkin TM, Campbell KM, Chambliss GH (1979) Spectinomycin dependence in Bacillus subtilis. J Bacteriol 137: 1452–1455PubMedGoogle Scholar
  76. Hofman JD, Lau RH, Doolittle WF (1979) The number, physical organization and transcription of ribosomal RNA cistrons in an archaebacterium: Halobacterium halobium. Nucleic Acids Res 7: 1321–1333PubMedGoogle Scholar
  77. Högenauer G (1979) Tiamulin and pleuromutilin. In: Hahn FE (ed) Mechanism of action of antibacterial agents. Springer, Berlin Heidelberg New York, p 344 (Antibiotics, vol 5 part 1 )Google Scholar
  78. Hull R, Klinger JD, Moody EEM (1976) Isolation and characterization of mutants of Escherichia coli K12 resistant to the new aminoglycoside antibiotic, amikacin. J Gen Microbiol 94: 389–394PubMedGoogle Scholar
  79. Hummel H, Böck A (1983) On the basis of aminoglycoside-dependent growth of mutants from E. coli: physiological studies. Mol Gen Genet 191: 167–175PubMedGoogle Scholar
  80. Hummel H, Böck A (1987b) Thiostrepton resistance mutations in the gene for 23S ribosomal RNA of halobacteria. Biochimie 69: 857–861PubMedGoogle Scholar
  81. Hummel H, Piepersberg W, Böck A (1979) Analysis of lincomycin resistance mutations in Escherichia coli. Mol Gen Genet 169: 345–347PubMedGoogle Scholar
  82. Hummel H, Ahmad MH, Böck A (1983) On the basis of aminoglycoside-dependent growth of mutants of Escherichia coli: in vitro studies and the model. Mol Gen Genet 191: 176–181PubMedGoogle Scholar
  83. Hummel H, Bär U, Heller G, Böck A (1985) Antibiotic sensitivity pattern of in vitro polypeptide synthesis systems from Methanosarcina barkeri and Methanospirillum hungatei. Syst Appl Microbiol 6: 125–131Google Scholar
  84. Hummel H, Jarsch M, Böck A (1986) Unique antibiotic sensitivity of protein synthesis in archaebacteria and the possible structural basis. In: Schlessinger D (ed) Microbiology. American Society for Microbiology, Washington DC, p 370Google Scholar
  85. Ito K, Wittekind M, Nomura M, Shiba K, Yura T, Miuza A, Nashimoto N (1983) A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins. Cell 32: 789–797PubMedGoogle Scholar
  86. Itoh T, Wittmann HG (1973) Amino acid replacements in protein S5 and S12 of two Escherichia coli revertants from streptomycin dependence to independence. Mol Gen Genet 127: 19–32Google Scholar
  87. Iwami M, Muto A, Yamao F, Osawa S (1984) Nucleotide sequence of the rrnB 16S ribosomal RNA gene from Mycoplasma capricolum. Mol Gen Genet 196: 317–322PubMedGoogle Scholar
  88. Jarsch M, Böck A (1985a) Sequence of the 16S ribosomal RNA gene from Methanococcus vannielii: evolutionary implications. Syst Appl Microbiol 6: 54–59Google Scholar
  89. Jarsch M, Böck A (1985b) Sequence of the 23S rRNA gene from the archaebacterium Methanococcus vannielii: evolutionary and functional implications. Mol Gen Genet 200: 305–312Google Scholar
  90. Jiménez A, Vazquez D (1975) Quantitative binding of antibiotics to ribosomes from a yeast mutant altered on the peptidyl transferase center. Eur J Biochem 54: 483–492PubMedGoogle Scholar
  91. Jiménez A, Vazquez D (1979) Anisomycin and related antibiotics. In: Hahn FE (ed) Mechanism of action of anti-eukaryotic and antiviral compounds. Springer, Berlin Heidelberg New York, p 1 (Antibiotics, vol 5, part 2 )Google Scholar
  92. Jiménez A, Sanchez L, Vazquez D (1975) Simultaneous ribosomal resistance to trichodermin and anisomycin in Saccharomyces cerevisiae mutants. Biochim Biophys Acta 383: 427–434PubMedGoogle Scholar
  93. Jiménez A, Carrasco C, Vazquez D (1977) Enzymatic and non-enzymatic translocation by yeast polysomes. Site of action of a number of inhibitors. Biochemistry 16: 4727–4730PubMedGoogle Scholar
  94. Kearney SE, Craig IW (1981) Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance. Nature 290: 607–608Google Scholar
  95. Kjems J, Garrett RA, Ansorge W (1987a) The sequence of the 16S RNA gene and its flanking region from the archaebacterium D. mobilis. Syst Appl Microbiol 9: 22–28Google Scholar
  96. Kjems J, Leffers H, Garrett RA, Wich G, Leinfelder W, Böck A (1987b) Gene organization, transcription signals and processing of the single ribosomal RNA operon of the archaebacterium Thermoproteus tenax. Nucleic Acids Res 15: 4821–4835PubMedGoogle Scholar
  97. Koike K, Tair M, Kuchino Y, Yaginuma K, Sekiguchi T, Kobayashi M (1983) Mutations of the rat mitochondrial genome. In: Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1983: nuclear-cytoplasmic interactions. de Gruyter, Berlin, p 371Google Scholar
  98. Kop J, Wheaton V, Gupta R, Woese CR, Noller HF (1984a) Complete nucleotide sequence of a 23S ribosomal RNA gene from Bacillus stearothermophilus. DNA 3: 347–357PubMedGoogle Scholar
  99. Kop J, Kopylov AM, Magrum L, Siegel R, Gupta R, Woese CR, Noller HF (1984b) Probing the structure of 16S ribosomal RNA from Bacillus brevis. J Biol Chem 259: 15287–15293PubMedGoogle Scholar
  100. Kühberger R, Piepersberg W, Petzet A, Buckel P, Böck A (1979) Alteration of ribosomal protein L6 in gentamicin-resistant strains of Escherichia coli. Effects on fidelity of protein synthesis. Biochemistry 18: 187–193PubMedGoogle Scholar
  101. Lacey RW, Chopra I (1972) Evidence for mutation to streptomycin resistance in clinical strains of Staphylococcus aureus. J Gen Microbiol 73: 175–180PubMedGoogle Scholar
  102. Lai CJ, Weisblum B (1971) Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc Natl Acad Sci USA 68: 856–860PubMedGoogle Scholar
  103. Lechner K, Wich G, Böck A (1985) The nucleotide sequence of the 16S rRNA gene and flanking regions from Methanobacterium formicicum: the phylogenetic relationship between methanogenic and halophilic archaebacteria. Syst Appl Microbiol 6: 157–163Google Scholar
  104. Leffers H, Kjems J, Lstergaard L, Larsen N, Garrett RA (1987) Evolutionary relationship amongst archaebacteria: a comparative study of 23S ribosomal RNAs of a sulphur-dependent extreme thermophie, an extreme halophile and a thermophilic methanogen. J Mol Biol 195: 43–61PubMedGoogle Scholar
  105. Le Goffic P, Capmau M, Tangy F, Caminade E (1980) Have deoxystreptamine amino-glycoside antibiotics the same binding site on bacterial ribosomes? J Antibiot 33: 895–899PubMedGoogle Scholar
  106. Leinfelder W, Jarsch M, Böck A (1985) The phylogenetic position of the sulfur-dependent archaebacterium Thermoproteus tenax: sequence of the 16S rRNA gene. Syst Appl Microbiol 6: 164–170Google Scholar
  107. Lelong JC, Gros D, Gros F, Bollen A, Maschler R, Stöffler G (1974) Function of individual 30S subunit proteins of Escherichia coli. Effect of specific immunoglobin fragments ( Fab) on activities of ribosomal decoding sites. Proc Natl Acad Sci USA 71: 248–252PubMedGoogle Scholar
  108. Li M, Tzagoloff A, Underbrink-Lyon K, Martin NC (1982) Identification of the paromomycin resistance mutation in the 15S rRNA of yeast mitochondria. J Biol Chem 257: 5921–5928PubMedGoogle Scholar
  109. Lindahl L, Zengel JM (1986) Ribosomal genes in Escherichia coli. Annu Rev Genet 20: 297–326PubMedGoogle Scholar
  110. Maness MJ, Foster GC, Sparling PF (1974) Ribosomal resistance to streptomycin and spectinomycin in Neisseria gonorrhoeae. J Bacteriol 120: 1293–1299PubMedGoogle Scholar
  111. Mankin AS, Kagramanova VK (1986) Complete nucleotide sequence of the single ribosomal RNA operon of Halobacterium halobium: Secondary structure of the archaebacterial 23S rRNA. Mol Gen Genet 202: 152–161Google Scholar
  112. McCarroll R, Olsen GJ, Stahl YD, Woese CR, Sogin ML (1983) Nucleotide sequence of Dictyostelium discoideum small-subunit rRNA inferred from the gene sequence: evolutionary implications. Biochemistry 22: 5828–5868Google Scholar
  113. Menninger JR, Otto DP (1982) Erythromycin, carbomycin, and spiromycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes. Antimicrob Agents Chemother 21: 810–818Google Scholar
  114. Mikulík K, Jirânovâ A, Janda I, Weiser J (1983) Susceptibility of ribosomes of the tetracycline-producing strain of Streptomyces aureofaciens to tetracycline. FEBS Lett 152: 125–130PubMedGoogle Scholar
  115. Mizumo T, Yamada H, Yamagata H, Mizushima S (1976) Coordinated alterations in ribosomes and cytoplasmic membrane in sucrose-dependent, spectinomycin-resistant mutants of Escherichia coli. J Bacteriol 125: 524–530Google Scholar
  116. Moazed D, Noller HF (1986) Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47: 985–994PubMedGoogle Scholar
  117. Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327: 389–394PubMedGoogle Scholar
  118. Momose H, Gorini L (1971) Genetic analysis of streptomycin dependence in Escherichia coli. Genetics 67: 19–38PubMedGoogle Scholar
  119. Montandon PE, Nicolas P, Schürmann P, Stutz E (1985) Streptomycin-resistance of Euglena gracilis chloroplasts: identification of a point mutation in the 16S rRNA gene in an invariant position. Nucleic Acids Res 13: 4299–4310PubMedGoogle Scholar
  120. Montandon PE, Wagner R, Stutz E (1986) E. coli ribosomes with C912 to U base change in the 16S rRNA are streptomycin resistant. EMBO J 5: 3705–3708PubMedGoogle Scholar
  121. Morris VJ, Jennings BR (1975) The effect of neomycin and streptomycin on the electrical polarisability of aqueous suspensions of Escherichia coli. Biochim Biophys Acta 392: 328–334PubMedGoogle Scholar
  122. Nierhaus KH (1980) Analysis of the assembly and function of the 50S subunit from Escherichia coli ribosomes by reconstitution. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes. Structure, function and genetics. University Park Press, Baltimore, p 267Google Scholar
  123. Nikaido H (1976) Outer membrane of Salmonella typhimurium: transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta 433: 118–132PubMedGoogle Scholar
  124. Noller HF (1984) Structure of ribosomal RNA. Annu Rev Biochem 53: 119–162PubMedGoogle Scholar
  125. Noller HF, Asire M, Barta A, Douthewaite S, Goldstein T, Gutell RR, Moazed D, Nor-manly J, Prince JB, Sterm S, Triman K, Turner S, van Stalk B, Wheaton V, Weiser B, Woese CR (1986) Studies on the structure and function of ribosomal RNA. In: Hardesty B, Kramer G (eds) Structure, function, and genetics of ribosomes. Springer, Berlin Heidelberg New York, Tokyo, p 143Google Scholar
  126. Nomura M, Sidikaro J, Jakes K, Zinder N (1974) Effects of colicin E3 on bacterial ribosomes. In: Nomura M, Tissiéres A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Laboratory, New York, p 804Google Scholar
  127. Nomura M, Morgan EA, Jaskunas SR (1977) Genetics of bacterial ribosomes. Annu Rev Genet 11: 297–347PubMedGoogle Scholar
  128. Ohnuki T, Katoh T, Imanaka T, Aiba S (1985) Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes. J Bacteriol 161: 1010–1016PubMedGoogle Scholar
  129. Okuyama A, Yoshikawa M, Tanaka N (1974) Alteration of ribosomal protein S2 in kasugamycin-resistant mutant derived from Escherichia coli AB312. Biochem Biophys Res Commun 60: 1163–1169PubMedGoogle Scholar
  130. Olsen GJ, Pace NR, Nuell M, Kaine BP, Gupta R, Woese CR (1985) Nucleotide sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus soljataricus. J Mol Evol 22: 301–308PubMedGoogle Scholar
  131. Østergaard L, Larsen N, Leffers H, Kjems J, Garrett RA (1987) A ribosomal RNA operon and its flanking region from the archaebacterium Methanobacterium thermoautotrophicum, Marburg strain: transcription signals, RNA structure and evolutionary implications. Syst Appl Microbiol 9: 199–209Google Scholar
  132. Ozaki M, Mizushima S, Nomura M (1969) Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222: 333–339PubMedGoogle Scholar
  133. Parker J, Watson RJ, Friesen JD, Fiil NP (1976) A relaxed mutant with an altered ribosomal protein L11. Mol Gen Genet 144: 111–114PubMedGoogle Scholar
  134. Pestka S (1977) Inhibitors of protein synthesis. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein synthesis. Academic, New York, p 467Google Scholar
  135. Piendl W, Böck A, Cundliffe E (1984) Involvement of 16S ribosomal RNA in resistance of the aminoglycoside-producers Streptomyces tenjimariensis, Streptomyces tenebrarius and Micromonospora purpurea. Mol Gen Genet 197: 24–29PubMedGoogle Scholar
  136. Piepersberg W, Böck A, Wittmann HG (1975a) Effect of different mutations in ribosomal protein S5 of Escherichia coli on translational fidelity. Mol Gen Genet 140: 91–100PubMedGoogle Scholar
  137. Piepersberg W, Böck A, Yaguchi M, Wittmann HG (1975b) Genetic position and amino acid replacements of several mutations in ribosomal protein S5 from Escherichia coli. Mol Gen Genet 143: 43–52PubMedGoogle Scholar
  138. Piepersberg W, Noseda V, Böck A (1979) Bacterial ribosomes with ambiguity mutations: effects on translational fidelity, on the response to aminoglycosides and on the rate of protein synthesis. Mol Gen Genet 171: 23–34PubMedGoogle Scholar
  139. Piepersberg W, Geyl D, Hummel H, Böck A (1980) Physiology and biochemistry of bacterial ribosomal mutants. In: Osawa S, Ozeki H, Uchida H, Yura T (eds) Genetics and evolution of RNA polymerase, tRNA and ribosomes. University of Tokyo Press, Tokyo, p 359Google Scholar
  140. Plotz PH, Davis BD (1962) Absence of a chloramphenicol-insensitive phase of streptomycin action. J Bacteriol 83: 802–805PubMedGoogle Scholar
  141. Prince JB, Taylor BH, Thurlow DL, Ofengand J, Zimmermann RA (1982) Covalent cross-linking of tRNAval to 16S RNA at the ribosomal P site: identification of crosslinked residues. Proc Natl Acad Sci USA 79: 5450–5454PubMedGoogle Scholar
  142. Reichenbecher VE, Caskey CT (1979) Emetine-resistant Chinese hamster cells. The identification of an electrophoretically altered protein of the 40S ribosomal subunit. J Biol Chem 254: 6207–6210PubMedGoogle Scholar
  143. Rosset R, Gorini L (1969) A ribosomal ambiguity mutation. J Mol Biol 39: 95–112PubMedGoogle Scholar
  144. Rubtsov PM, Musakhanov MM, Zakharyev VM, Krayev AS, Skryabin CG, Bayev AA (1980) The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. Nucleic Acids Res 8: 5779–5794PubMedGoogle Scholar
  145. Ruusala T, Andersson DI, Ehrenberg M, Kurland CG (1984) Hyperaccurate ribosomes inhibit growth. EMBO J 3: 2575–2580PubMedGoogle Scholar
  146. Saito T, Hashimoto H, Mitsuhashi S (1969) Drug resistance of Staphylococci. Decrease in the formation of erythromycin-ribosomes complex in erythromycin-resistant strains. Jpn J Microbiol 13: 119–121PubMedGoogle Scholar
  147. Saltzman L, Apirion D (1976) Binding of erythromycin to the 505 ribosomal subunit is affected by alteration in the 30S ribosomal subunit. Mol Gen Genet 143: 301–306PubMedGoogle Scholar
  148. Sanchez L, Vazquez D, Jiménez A (1977) Genetics and biochemistry of cryptopleurine resistance in the yeast Saccharomyces cerevisiae. Mol Gen Genet 156: 319–326PubMedGoogle Scholar
  149. Schmid G, Pecher T, Böck A (1982) Properties of the translational apparatus of archaebacteria. Zentralbi Bakteriol Hyg I. Abt. Orig C3: 209–217Google Scholar
  150. Schreiner G, Nierhaus KH (1973) Protein involved in the binding of dihydrostreptomycin to ribosomes of Escherichia coli. J Mol Biol 81: 71–82PubMedGoogle Scholar
  151. Seilhamer JJ, Cummings DJ (1981) Structure and sequence of the mitochondrial 20S rRNA and tRNA tyr gene of Paramecium primaurelia. Nucleic Acids Res 9: 6391–6409PubMedGoogle Scholar
  152. Shultz J, Silhavy TJ, Berman ML, Fiil N, Emr SD (1982) A previously unidentified gene in the spc operon of Escherichia coli K12 specifies a component of the protein export machinery. Cell 31: 227–235PubMedGoogle Scholar
  153. Sigmund CD, Ettayebi M, Morgan EA (1984) Antibiotic resistance mutations in the 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res 12: 4653–4663PubMedGoogle Scholar
  154. Skeggs PA, Holmes DJ, Cundliffe E (1987) Cloning of aminoglycoside-resistance determinants from Streptomyces tenebrarius and comparison with related genes from other actinomycetes. J Gen Microbiol 133: 915–923PubMedGoogle Scholar
  155. Skinner R, Cundliffe E, Schmidt FJ (1983) Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem 258: 12702–12706PubMedGoogle Scholar
  156. Skogerson L, McLaughlin C, Wakatama E (1973) Modification of ribosomes in crytopleurine-resistant mutants of yeast. J Bacteriol 116: 812–822Google Scholar
  157. Slott EF Jr, Shade RO, Lansman RA (1983) Sequence analysis of mitochondrial DNA in a mouse cell line resistant to chloramphenicol and oligomycin. Mol Cell Biol 3: 1694–1702PubMedGoogle Scholar
  158. Smith I, Paress P, Pestka S (1978) Thiostrepton-resistant mutants exhibit relaxed synthesis of RNA. Proc Natl Acad Sci USA 75: 5993–5997PubMedGoogle Scholar
  159. Sor F, Fukuhara H (1980) Nucleotide sequence of the genes for the mitochondrial 15S ribosomal RNA of yeast. CR Acad Sci 291: 933–936Google Scholar
  160. Sor F, Fukuhara H (1982) Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucleic Acids Res 10: 6571–6577PubMedGoogle Scholar
  161. Sor F, Fukuhara H (1984) Erythromycin and spiramycin resistance mutations in yeast mitochondria: nature of the rib2 locus in the large ribosomal RNA gene. Nucleic Acids Res 12: 8313–8318PubMedGoogle Scholar
  162. Sougakoff W, Papadopoulou B, Nordmann P, Courvalin P (1987) Nucleotide sequence and distribution of gene tet0 encoding tetracycline resistance in Campylobacter coli. FEMS Microbiol Lett 44: 153–159Google Scholar
  163. Spangler EA, Blackburn EH (1985) The nucleotide sequence of the 17S ribosomal RNA gene of Tetrahymena thermophila and the identification of point mutations resulting in resistance to the antibiotics paromomycin and hygromycin. J Biol Chem 26: 6334–6340Google Scholar
  164. Sparling PF, Blackman E (1973) Mutation to erythromycin dependence in Escherichia coli K-12. J Bacteriol 116: 74–83PubMedGoogle Scholar
  165. Spedding G, Cundliffe E (1984) Identification of the altered ribosomal component responsible for resistance to micrococcin in mutants of Bacillus megaterium. Eur J Biochem 140: 453–459PubMedGoogle Scholar
  166. Spotts CR (1962) Physiological and biochemical studies on streptomycin dependence in Escherichia coli. J Gen Microbiol 28: 347–365PubMedGoogle Scholar
  167. Spotts CR, Staníer RY (1961) Mechanism of streptomycin action on bacteria, a unitary hypothesis. Nature 192: 633–637PubMedGoogle Scholar
  168. Stark MJR, Cundliffe E (1979a) Requirement for ribosomal protein BM-L11 in stringent control of RNA synthesis in Bacillus megaterium. Eur J Biochem 102: 101–105PubMedGoogle Scholar
  169. Stark MJR, Cundliffe E (1979b) On the biological role of ribosomal protein BM-L11 of Bacillus megaterium, homologous with Escherichia coli ribosomal protein L11. J Mol Biol 134: 767–779PubMedGoogle Scholar
  170. Steen R, Jemiolo DK, Skinner RH, Dunn JJ, Dahlberg AE (1986) Expression of plasmidcoded mutant ribosomal RNA in E. coli: choice of plasmid vectors and gene expression systems. Proc Nucleic Acids Res Mol Biol 33: 1–18Google Scholar
  171. Stiege W, Glotz C, Brimacombe R (1983) Localization of a series of intra-RNA cross-links in the secondary structure of 23S RNA induced by ultraviolet irradiation of Escherichia coli 505 ribosomal subunits. Nucleic Acids Res 11: 1687–1706PubMedGoogle Scholar
  172. Stöcklein W, Piepersberg W (1980a) Altered ribosomal protein L29 in a cycloheximide-resistant strain of Saccharomyces cerevisiae. Curr Genet 1: 177–183Google Scholar
  173. Stöcklein W, Piepersberg W (1980b) Binding of cycloheximide to ribosomes from wild-type and mutant strains of Saccharomyces cerevisiae. Antimicrob Agents Chemother 18: 863–867PubMedGoogle Scholar
  174. Stöcklein W, Piepersberg W, Böck A (1981) Amino acid replacements in ribosomal protein YL24 of Saccharomyces cerevisiae causing resistance to cycloheximide. FEBS Lett 136: 265–268PubMedGoogle Scholar
  175. Tanaka N, Yamaguchi H, Umezawa H (1966) Mechanism of kasugamycin action on polypeptide synthesis. J Biochem 60: 429–434PubMedGoogle Scholar
  176. Tanaka K, Tamaki M, Itoh T, Otaka E, Osawa S (1971) Ribosomes from spiramycin resistant mutants of Escherichia coli Q13. Mol Gen Genet 114: 23–30Google Scholar
  177. Thompson J, Cundliffe E, Stark M (1979) Binding of thiostrepton to a complex of 23S rRNA with ribosomal protein L11. Eur J Biochem 98: 261–265PubMedGoogle Scholar
  178. Thompson J, Schmidt F, Cundliffe E (1982) Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J Biol Chem 257: 7915–7917PubMedGoogle Scholar
  179. Thorbjarnardóttir SH, Magnusdóttir RA, Eggertsson G (1978) Mutations determining generalized resistance to aminoglycoside antibiotics in Escherichia coli. Mol Gen Genet 161: 89–98PubMedGoogle Scholar
  180. Torczynski R, Bollon AP, Fuke M (1983) The complete nucleotide sequence of the rat 18S ribosomal RNA gene and comparison with the respective yeast and frog genes. Nucleic Acids Res 11: 4879–4890PubMedGoogle Scholar
  181. Traub P, Nomura M (1968) Streptomycin resistance mutation in Escherichia coli: altered ribosomal protein. Science 160: 198–199PubMedGoogle Scholar
  182. Tseng JL, Bryan LE, van den Elzen HM (1972) Mechanisms and spectrum of streptomycin resistance in a natural population of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2: 136–141PubMedGoogle Scholar
  183. Umezawa S (1975) The chemistry and conformation of aminoglycoside antibiotics. In: Mitsuhashi S (ed) Drug action and drug resistance in bacteria. Vol 2: Aminoglycoside antibiotics. University of Tokyo Press, TokyoGoogle Scholar
  184. Van Buul CPJJ, Vissert W, van Knippenberg PH (1984) Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harbouring the ksgA gene. FEBS Lett 177: 119–124PubMedGoogle Scholar
  185. Vazquez D (1979) Inhibitors of protein biosynthesis. Springer, Berlin Heidelberg New York (molecular biology, biochemistry, and biophysics, vol 30 )Google Scholar
  186. Weisblum B (1985) Inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression — a review. J Antimicrob Chemother [Suppl A] 16: 63–90Google Scholar
  187. Wejksnora PJ, Warner JR (1982) Mutation-induced instability of antibiotic-resistant mammalian ribosomes. Eur J Biochem 128: 239–242PubMedGoogle Scholar
  188. Wienen B, Ehrlich R, Stöffler-Meilicke M, Stöffler G, Smit I, Weiss D, Vince R, Pestka S (1979) Ribosomal protein alterations in thiostrepton-and micrococcin-resistant mutants of Bacillus subtilis. J Biol Chem 254: 8031–8041PubMedGoogle Scholar
  189. Wittmann HG, Stöffler G, Apirion D, Rosen L, Tanaka K, Tamaki M, Takata R, Dekio S, Otaka E, Osawa S (1973) Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol Gen Genet 127: 175–189PubMedGoogle Scholar
  190. Wittmann HG, Stöffler G, Piepersberg W, Buckel P, Ruffler D, Böck A (1974) Altered S5 and S20 ribosomal proteins in revertants of an alanyl-tRNA synthetase mutant of Escherichia coli. Mol Gen Genet 134: 225–236PubMedGoogle Scholar
  191. Wool IG (1984) The mechanism of action of the cytotoxic nuclease a-sarcin and its use to analyse ribosome structure. Trends Biochem Sci 9: 14–17Google Scholar
  192. Yaguchi M, Wittmann HG, Cabezón T, de Wilde M, Villarroel R, Herzog A, Bollen A (1975) Cooperative control of translational fidelity by ribosomal proteins in Escherichia coli. II. Localization of amino acid replacements in proteins S5 and S12 altered in double mutants resistant to neamine. Mol Gen Genet 142: 35–43PubMedGoogle Scholar
  193. Yaguchi M, Wittmann HG, Cabezón T, de Wilde M, Villarroel R, Herzog A, Bollen A (1976) Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. II. Localization of the amino acid replacement in protein S17 from a neaA mutant. J Mol Biol 104: 617–620PubMedGoogle Scholar
  194. Yang D, Kaine BP, Woese CR (1985) The phylogeny of archaebacteria. Syst Appl Microbiol 6: 251–256Google Scholar
  195. Zengel JM, Young R, Dennis PP, Nomura M (1977) Role of ribosomal protein S12 in peptide chain elongation: analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli. J Bacteriol 129: 1320–1329PubMedGoogle Scholar
  196. Zierhut G, Piepersberg W, Böck A (1979) Comparative analysis of the effect of aminoglycosides on bacterial protein synthesis in vitro. Eur J Biochem 98: 577–583PubMedGoogle Scholar
  197. Zimmermann RA, Rosset R, Gorini L (1971a) Nature of phenotypic masking exhibited by drug-dependent streptomycin mutants of Escherichia coli. J Mol Biol 57: 403–422Google Scholar
  198. Zimmermann RA, Moellering RC, Weniberg AN (1971b) Mechanism of resistance to antibiotic synergism in enterococci. J Bacteriol 105: 873–879PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • H. Hummel
  • A. Böck

There are no affiliations available

Personalised recommendations