Plasmid-Determined Beta-Lactamases

  • A. A. Medeiros
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 91)


The resistance of bacterial isolates to beta-lactam antibiotics is due principally to the production of beta-lactamases. Some beta-lactamases are determined by genes on the bacterial chromosome and others by genes on plasmids that can transfer from one species to another (Datta and Kontomichalou 1965). Moreover, twelve plasmid-determined beta-lactamases are known so far to be encoded by transposons (Table 1), genetic elements that can transfer from one plasmid to another and to and from plasmids and the bacterial chromosome (Hedges and Jacob 1974).


Clinical Isolate Antimicrob Agent Substrate Profile Animal Isolate Active Site Serine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham EP, Chain E (1940) An enyzme from bacteria able to destroy penicillin. Nature 373: 837Google Scholar
  2. Amaral L, Lee Y, Schwarz U, Lorian V (1986) Penicillin-binding site on the Escherichia coli cell envelope. J Bacteriol 167: 492–495PubMedGoogle Scholar
  3. Ambler RP (1980) The structure of beta-lactamases. Philos Trans R Soc Lond 289: 321–331Google Scholar
  4. Ambler RP, Scott GK (1978) Partial amino acid sequence of penicillinase coded by Escherichia coli plasmid R6K. Proc Natl Acad Sci USA 75: 3732–3736PubMedGoogle Scholar
  5. Arakawa Y, Ohta M, Kido N, Fujii Y, Komatsu T, Kato N (1986) Close evolutionary relationship between the chromosomally encoded beta-lactamase gene of Klebsiella pneumoniae and the TEM beta-lactamase gene mediated by R plasmids. FEBS Lett 207: 6974Google Scholar
  6. Barthelemy M, Peduzzi J, Labia R (1985) Distinction between the primary structures of TEM-1 and TEM-2 beta-lactamases. Ann Inst Pasteur Microbiol 136 [A]: 311–321Google Scholar
  7. Barthelemy M, Peduzzi J, Labia R (1987) N-terminal amino acid sequence of PIT-2 beta-lactamase (SHV-1). J Antimicrob Chemother 19: 839–852PubMedGoogle Scholar
  8. Bauernfeind A, Horl G (1987) Novel R-factor borne beta-lactamase of Escherichia coli conferring resistance to cephalosporins. Infection 15: 257–259PubMedGoogle Scholar
  9. Bauernfeind A, Shah P, Petermuller C, Motz M (1985) Plasmid-determined resistance to third generation cephalosporins in enterobacteria. Chemioterapia 4: 30–31Google Scholar
  10. Bergstrom S, Olsson O, Normark S (1982) Common evolutionary origin of chromosomal beta-lactamase genes in enterobacteria. J Bacteriol 150: 528–534PubMedGoogle Scholar
  11. Bobrowski MM, Matthew M, Barth PT, Datta N, Grinter NJ, Jacob AE, Kontomichalou P, Dale JW, Smith JT (1976) Plasmid-determined beta-lactamase indistinguishable from the chromosomal beta-lactamase of Escherichia coli. J Bacteriol 125: 149–157PubMedGoogle Scholar
  12. Boissinot M, Mercier J, Levesque RC (1987) Development of natural and synthetic DNA probes for OXA-2 and TEM-1 beta-lactamases. Antimicrob Agents Chemother 31: 728–734PubMedGoogle Scholar
  13. Boyce JM, Medeiros AA (1987) Role of beta-lactamase in expression of resistance by meth- icillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 31: 1426–1428PubMedGoogle Scholar
  14. Brun-Buisson C, Legrand P, Philippon A, Montravers F, Ansquer M, Duval J (1987) Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet 2: 302–306PubMedGoogle Scholar
  15. Centers for Disease Control (1982) Global distribution of penicillinase-producing Neisseria gonorrhoeae (PPNG). Conn Med 42: 223Google Scholar
  16. Chambers HF, Hartman BJ, Tomasz A (1985) Increased amounts of a novel penicillin-binding protein in a strain of methicillin-resistant Staphylococcus aureus exposed to nafcillin. J Clin Invest 76: 325–331PubMedGoogle Scholar
  17. Chan PT (1986) Nucleotide sequence of the Staphylococcus aureus PC1 beta-lactamase gene. Nucleic Acids Res 14: 59–40Google Scholar
  18. Chen S-T, Clowes RC (1987) Nucleotide sequence comparisons of plasmids pHD131, pJB1, pFA3, and pFA7 and beta-lactamase expression in Escherichia coli, Haemophilus influenzae, and Neisseria gonorrhoeae. J Bacteriol 169: 3124–3130PubMedGoogle Scholar
  19. Cooksey RC, Clark NC, Thornsberry C (1985) A gene probe for TEM type beta-lactamases. Antimicrob Agents Chemother 28: 154–156PubMedGoogle Scholar
  20. Coulson A (1985) Beta-lactamases: molecular studies. Biotechnol Genet Eng Rev 3: 219–253PubMedGoogle Scholar
  21. Cullmann W, Flensberg T, Opferkuch W, Stieglitz M, Wiedemann B (1982) Correlation of beta-lactamase production and resistance to beta-lactam antibiotics in Enterobacteriaceae. Zentralbl Bakteriol Mikrobiol Hyg 252: 480–489Google Scholar
  22. Cullmann W, Opferkuch W, Steiglitz M, Dick W (1984) Influence of spontaneous and inducible beta-lactamase production on the antimicrobial activity of recently developed beta-lactam compounds. Chemotherapy 30: 175–181PubMedGoogle Scholar
  23. Dale JW, Smith JT (1976) The dimeric nature of an R-factor mediated beta-lactamase. Biochem Biophys Res Commun 68: 1000–1005PubMedGoogle Scholar
  24. Dale JW, Goodwin D, Mossakowska D, Stephenson P, Wall S (1985) Sequence of the OXA-2 beta-lactamase: comparison with other penicillin-reactive enzymes. FEBS Lett 191: 39–44PubMedGoogle Scholar
  25. Datta N, Kontomichalou P (1965) Penicillinase synthesis controlled by infectious R-factors in Enterobacteriaceae. Nature 208: 239–241PubMedGoogle Scholar
  26. Dyke KGH (1979) Beta-lactamases of Staphylococcus aureus. In: Hamilton-Miller JMT, Smith JT (eds) Beta-lactamases. Academic Press, London, pp 291–310Google Scholar
  27. Eliasson I, Kamme C (1985) Characterization of the plasmid-mediated beta-lactamase in Branhamella catarrhalis, with special reference to substrate affinity. J Antimicrob Chemother 15: 139–149PubMedGoogle Scholar
  28. Esposito S, Galante D, Barba D, Pennucci D, Limauro D (1985) Correlation of beta-lactamase stability and antibacterial activity of beta-lactams in beta-lactamase-producing bacteria and respective transconjugants. Chemioterapia 4: 33–35Google Scholar
  29. Goering RV, Ruff EA (1983) Comparative analysis of conjugative plasmids mediating gentamicin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 24: 450–452PubMedGoogle Scholar
  30. Goussard S, Sougakoff W, Gerbaud G, Courvalin P (1987) CTX-1, a wide-substrate-range enzyme, is a derivative of a TEM beta-lactamase. Program and abstracts of the twenty-seventh interscience conference on antimicrobial agents and chemotherapy. American Society for Microbiology, New York, No 517Google Scholar
  31. Guttmann L, Kitzes MD, Billot-Klein MD, Goldstein FW, Tran Van Nhieu, Collatz R (1987) New plasmid-mediated TEM-derived beta-lactamase hydrolyzing ceftazidime. Program and abstracts of the twenty-seventh interscience conference on antimicrobial agents and chemotherapy, American Society for Microbiology, New York, No 518Google Scholar
  32. Hedge PJ, Spratt BG (1985) Resistance to beta-lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein. Nature 318: 478–480PubMedGoogle Scholar
  33. Hedges RW, Jacob AE (1974) Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet 132: 31–40PubMedGoogle Scholar
  34. Hedges RW, Matthew M, Smith DI, Cresswell JM, Jacob AE (1977) Properties of a transposon conferring resistance to penicillins and streptomycin. Gene 1: 241–253PubMedGoogle Scholar
  35. Hedges RW, Medeiros AA, Cohenford M, Jacoby GA (1985) Genetic and biochemical properties of AER-1, a novel carbenicillin-hydrolyzing beta-lactamase from Aeromonas hydrophila. Antimicrob Agents Chemother 27: 479–484PubMedGoogle Scholar
  36. Herzberg O, Moult J (1987) Bacterial resistance to beta-lactam antibiotics: crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.5. A resolution. Science 236: 694–701PubMedGoogle Scholar
  37. Holland S, Dale JW (1985) Immunological comparison between OXA-2 beta-lactamase and those mediated by other R plasmids. Antimicrob Agents Chemother 27: 989–991PubMedGoogle Scholar
  38. Huovinen P, Huovinen S, Jacoby GA (1988a) The sequence of PSE-2 beta-lactamase. Antimicrob Agents Chemother 32: 134–136PubMedGoogle Scholar
  39. Huovinen S, Huovinen P, Jacoby GA (1988b) Detection of plasmid-mediated beta-lactamases using DNA probes. Antimicrob Agents Chemother 32: 175–179PubMedGoogle Scholar
  40. Jack GW, Richmond MH (1970) A comparative study of eight distinct beta-lactamases synthesized by gram-negative bacteria. J Gen Microbiol 61: 43–61PubMedGoogle Scholar
  41. Jacoby GA, Sutton L (1985) Beta-lactamases and beta-lactam resistance in Escherichia coli. Antimicrobial Agents Chemother 28: 703–705Google Scholar
  42. Jaurin B, Grundstrom T (1981) Amp C cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci USA 78: 4897–4901PubMedGoogle Scholar
  43. Joly B, Delmas C, Rich C, Prere MF, Livrelli V, Dabernat H (1987) Un nouveau mécanisme de résistance à l’ampicilline par production de beta-lactamase ROB-1 chez une souche d’Haemophilus influenzae isolée en France. Presse Méd 16: 916–917PubMedGoogle Scholar
  44. Jouvenot M, Bonin P, Michel-Briand Y (1983) Frequency of beta-lactamases that are markedly active against carbenicillin in the Pseudomonas aeruginosa strains isolated in a Medical School Hospital. J Antimicrob Chemother 12: 451–458PubMedGoogle Scholar
  45. Jouvenot M, Deschaseaux ML, Royez M, Mougin C, Cooksey RC, Michel-Briand Y, Adessi GL (1987) Molecular hybridization versus isoelectric focusing to determine TEM-type beta-lactamases in gram-negative bacteria. Antimicrob Agents Chemother 31: 300–305PubMedGoogle Scholar
  46. Katsu K, Inoue M, Mitsuhashi S (1981) Plasmid-mediated carbenicillin hydrolyzing betalactamases of Proteus mirabilis. J Antibiot 43: 1504–1506Google Scholar
  47. Kelly JA, Kideberg O, Charlier P, Wery JP, et al. (1986) On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 231: 1413–1429Google Scholar
  48. Kliebe C, Nies BA, Meyer JF, Tolxdorff-Neutzling RM, Wiedemann B (1985) Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother 28: 302–307PubMedGoogle Scholar
  49. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S (1983) Transferable resistance to cefotaxmine, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11: 315–317PubMedGoogle Scholar
  50. Kobayashi T, Fang Zhu Y, Nicholls NJ, Oliver Lampen J (1987) A second regulatory gene, blaRl, encoding a potential penicillin-binding protein required for induction of betalactamase in Bacillus licheniformis. J Bacteriol 169: 3873–3878PubMedGoogle Scholar
  51. Kopecko DJ, Brevet J, Cohen SN (1976) Involvement of multiple translocating DNA segments and recombinational hotspots in the structural evolution of bacterial plasmids. J Mol Biol 108: 333–360PubMedGoogle Scholar
  52. Kratz J, Schmidt F, Wiedemann B (1983) Transposition of a gene encoding OXA-2 betalactamase. J Gen Microbiol 129: 2951–2957PubMedGoogle Scholar
  53. Kron MA, Shlaes DM, Currie-McMumber C, Medeiros AA (1987) Molecular epidemiology of OHIO-1 beta-lactamase. Antimicrob Agents Chemother 31: 2007–2009PubMedGoogle Scholar
  54. Labia R, Fabre C, Masson J-M, Barthelemy M (1979) Klebsiella pneumoniae strains moderately resistant to ampicillin and carbenicillin: characterization of a new beta-lactamase. J Antimicrob Chemother 5: 375–382Google Scholar
  55. Labia R, Guionie M, Barthelemy M, Philippon A (1981) Properties of three carbenicillinhydrolyzing beta-lactamases (CARB) from Pseudomonas aeruginosa: identification of a new enzyme. J Antimicrob Chemother 7: 49–56PubMedGoogle Scholar
  56. Levesque R, Roy PH (1982) Mapping of the plasmid (pLQ3) from Achromobacter and cloning of its cephalosporinase gene in Escherichia coli. Gene 18: 69–75PubMedGoogle Scholar
  57. Levesque R, Roy PH, Letarte R, Pechere JC (1982) A plasmid-mediated cephalosporinase from Achromobacter species. J Infect Dis 145: 753–761PubMedGoogle Scholar
  58. Levesque R, Roy PH, Letarte R, Pechere JC (1982) A plasmid-mediated cephalosporinase from Achromobacter species. J Infect Dis 145: 753–761PubMedGoogle Scholar
  59. Levesque RC, Medeiros AA, Jacoby GA (1987) Molecular cloning and DNA homology of plasmid-mediated beta-lactamase genes. MGG 206: 252–258PubMedGoogle Scholar
  60. Livermore DM, Jones CS (1986) Characterization of NPS-1, a novel plasmid-mediated beta-lactamase from two Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 29: 99–103PubMedGoogle Scholar
  61. Livermore DM, Pitt TL, Jones CS, Crees-Morris JA, Williams RJ (1985) PSE-4 beta-lactamase: a serotype-specific enzyme in Pseudomonas aeruginosa. J Med Microbiol 19: 45–53PubMedGoogle Scholar
  62. Livermore DM, Moosdeen F, Lindridge MA, Ko P, Williams JD (1986) Behaviour of TEM-1 beta-lactamase as a resistance mechanism to ampicillin, mezlocillin and azlocillin in Escherichia coli. J Antimicrob Chemother 17: 139–146PubMedGoogle Scholar
  63. Marre R, Borner K, Schulz E (1984) Different mechanisms of TEM-1 and OXA-1 mediated resistance to piperacillin in E. coli. Zentralbl Bakteriol Mikrobiol Hyg 58: 287–295Google Scholar
  64. Matthew M (1979) Plasmid-mediated beta-lactamase of gram-negative bacteria: properties and distribution. J Antimicrob Chemother 5: 349–358PubMedGoogle Scholar
  65. Matthew M, Harris AM (1976) Identification of beta-lactamases by analytical isoelectric focusing: correlation with bacterial taxonomy. J Gen Microbiol 94: 55–67PubMedGoogle Scholar
  66. Matthew M, Sykes RB (1977) Properties of the beta-lactamase specified by the Pseudomo-nas plasmid RPL11. J Bacteriol 132: 341–345PubMedGoogle Scholar
  67. Matthew M, Harris AM, Marshall MJ, Ross GW (1975) The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol 88: 169–178Google Scholar
  68. Matthew M, Hedges RW, Smith JT (1979) Types of beta-lactamase determined by plasmids in gram-negative bacteria. J Bacteriol 138: 657–662PubMedGoogle Scholar
  69. McDonnell RW, Sweendy HM, Cohen 5 (1983) Conjugational transfer of gentamicin resistance plasmids intra-and interspecifically in Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 23: 151–160Google Scholar
  70. Medeiros AA (1984) Beta-lactamases. Br Med Bull 40: 18–27PubMedGoogle Scholar
  71. Medeiros AA, Jacoby GA (1986) Beta-lactamase-mediated resistance. In: Queener SF, Webber JA, Queener SW (eds) Beta-lactam antibiotics for clinical use. Dekker, New York, pp 49–84Google Scholar
  72. Medeiros AA, O’Brien TF (1975) Ampicillin-resistant Haemophilus influenzae type b possessing a TEM-type beta-lactamase but little permeability barrier to ampicillin. Lancet 2: 716Google Scholar
  73. Medeiros AA, Kent RL, O’Brien TF (1974) Characterization and prevalence of the different mechanisms of resistance to beta-lactam antibiotics in clinical isolates of Escherichia coli. Antimicrob Agents Chemother 6: 791–801PubMedGoogle Scholar
  74. Medeiros AA, Ximenez J, Blickstein-Goldworm K, O’Brien TF, Acar J (1980) Beta-lactamases of ampicillin-resistant Escherichia coli from Brazil, France and the United States. In: Nelson JD, Grassi C (eds) Current chemotherapy and infectious diseases. American Society for Microbiology, Washington DC, pp 761–762Google Scholar
  75. Medeiros AA, Gilleece ES, O’Brien TF (1981) Distribution of plasmid type beta-lactamases in ampicillin-resistant salmonellae from humans and animals in the United States. In: Levy S, Clowes R, Koenig E (eds) Molecular biology, pathogenicity, and ecology of bacterial plasmids. Plenum, New York, p 634Google Scholar
  76. Medeiros AA, Hedges RW, Jacoby GA (1982) Spread of a “Pseudomonas-specific” betalactamase to plasmids of enterobacteria. J Bacteriol 149: 700–707PubMedGoogle Scholar
  77. Medeiros AA, Cohenford M, Jacoby GA (1985) Five novel plasmid-determined beta-lactamases. Antimicrob Agents Chemother 27: 715–719PubMedGoogle Scholar
  78. Medeiros AA, Levesque R, Jacoby GA (1986) An animal source for the ROB-1 beta-lac- tamase of Haemophilus influenzae type b. Antimicrob Agents Chemother 29: 212–215PubMedGoogle Scholar
  79. Medeiros AA, O’Brien TF, Rosenberg EY, Nikaido H (1987) Loss of OmpC in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J Infect Dis 156: 751–757PubMedGoogle Scholar
  80. Morin CJ, Patel PC, Levesque RC, Letarte R (1987) Monoclonal antibodies to TEM-1 plasmid-mediated beta-lactamase. Antimicrob Agents Chemother 31: 1761–1767PubMedGoogle Scholar
  81. Moxon ER, Medeiros AA, O’Brien TF (1977) Beta-lactamase effect on ampicillin treatment of Haemophilus influenzae b bacteremia and meningitis in infant rats. Antimicrob Agents Chemother 12: 461–464PubMedGoogle Scholar
  82. Murphy D, Todd J (1979) Treatment of ampicillin-resistant Haemophilus influenzae in soft tissue infections with high doses of ampicillin. J Pediatr 94: 983–987PubMedGoogle Scholar
  83. Murray BE, Mederski-Samoraj B (1983) Transferrable beta-lactamase. A new mechanism for in vitro penicillin resistance in Streptococcus faecalis. J Clin Invest 72: 1168–1171PubMedGoogle Scholar
  84. Murray BE, Mederski-Samoraj B, Foster SK, Brunton JL, Harford P (1986a) In vitro studies of plasmid-mediated penicillinase from Streptococcus faecalis suggest a staphylococcal origin. J Clin Invest 77: 289–293PubMedGoogle Scholar
  85. Murray BE, Church DA, Wanger A, Zscheck K, Levison ME, Ingerman MJ, Abrutyn E, Mederski-Samoraj B (1986b) Comparison of two beta-lactamase-producing strains of Streptococcus faecalis. Antimicrob Agents Chemother 30: 861–864PubMedGoogle Scholar
  86. Nielsen JBK, Lampen JO (1982) Glyceride-cysteine lipoproteins and secretion by gram-positive bacteria. J Bacteriol 152: 315–322PubMedGoogle Scholar
  87. Nikaido H (1985) Role of permeability barriers in resistance to beta-lactam antibiotics. Pharmacol Ther 27: 197–231PubMedGoogle Scholar
  88. Nugent ME, Hedges RW (1979) The nature of the genetic determinant for the SHV-1 betalactamase. Mol Gen Genet 175: 239–243PubMedGoogle Scholar
  89. O’Brien TF, Hopkins JD, Gilleece ES, Medeiros AA, Kent RL, Blackburn BO, Holmes MB, Reardon JP, Vergeront JM, Schell WL, Christenson E, Bissett ML, Morse EV (1982) Molecular epidemiology of antibiotic resistance in salmonella from animals and human beings in the United States. N Engl J Med 307: 1–6PubMedGoogle Scholar
  90. Ouellette M, Roy PH (1986) Analysis by using DNA probes of the OXA-1 beta-lactamase gene and its transposon. Antimicrob Agents Chemother 30: 46–51PubMedGoogle Scholar
  91. Ouellette M, Bissonnette L, Roy PH (1987a) Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc Natl Acad Sci USA 84: 7378–7382PubMedGoogle Scholar
  92. Ouellette M, Rossi JJ, Bazin R, Roy PH (1987b) Oligonucleotide probes for the detection of TEM-1 and TEM-2 beta-lactamase genes and their transposons. Can J Microbiol 33: 205–211PubMedGoogle Scholar
  93. Pagani L, Perduca M, Romero E (1982) Prevalence and distribution of R plasmid-mediated beta-lactamases in Enterobacteriaceae. Microbiologica 5: 179–184PubMedGoogle Scholar
  94. Paul G, Philippon A, Barthelemy M, Labia R, Nevot P (1981) Immunological distinction between constitutive beta-lactamases of gram-negative rods with antisera TEM-1 and CARB-3. Program and abstracts of the 21st interscience conference on antimicrobial agents and chemotherapy. American Society for Microbiology, Chicago, No 681Google Scholar
  95. Paul G, Philippon A, Nevot P (1985) Immunological identification of beta-lactamases: specificity of an immune serum anti-OXA-2. Chemioterapia 4: 31–33Google Scholar
  96. Percival A, Brumfitt W, de Louvois J (1963) The role of penicillinase in determining natural and acquired resistance of gram-negative bacteria to penicillins. J Gen Microbiol 32: 77–89PubMedGoogle Scholar
  97. Percival A, Rowlands J, Corkhill JE, Alergant CD, Arya OP, Rees E (1976) Penicillinaseproducing gonococci in Liverpool. Lancet 2: 1379–1382PubMedGoogle Scholar
  98. Penne PI, Schalla W, Siegel MS; Thornsberry C, Biddle J, Wong K-H, Thompson SE (1977) Evidence for two distinct types of penicillinase-producing Neisseria gonorrhoeae. Lancet 2: 993–995Google Scholar
  99. Philippon AM, Paul GC, Jacoby GA (1983) Properties of PSE-2 beta-lactamase and genetic basis for its production in Pseudomonas aeruginosa. Antimicrob Agents Chemother 24: 362–369PubMedGoogle Scholar
  100. Philippon A, Thabaut A, Meyran M, Nevot P (1984a) Distribution des beta-lactamases constitutives chez Pseudomonas aeruginosa. Presse Méd 13: 772–776PubMedGoogle Scholar
  101. Philippon A, Fournier G, Cornel E, Paul G, LeMinor L, Nevot P (1984b) Les beta-lacta- mases des Salmonella résistantes à l’ampicilline. Ann Microbiol (Paris) 135: 229–238Google Scholar
  102. Philippon AM, Paul GC, Jacoby GA (1986a) New plasmid-mediated oxacillin-hydrolyzing beta-lactamase in Pseudomonas aeruginosa. J Antimicrob Chemother 17: 415–422PubMedGoogle Scholar
  103. Philippon AM, Paul GC, Thabaut AP, Jacoby GA (1986b) Properties of a novel carbenicillin-hydrolyzing beta-lactamase (CARB-4) specified by an IncP-2 plasmid from Pseudomonas aeruginosa. Antimicrob Agents Chemother 29: 519–520PubMedGoogle Scholar
  104. Philippon A, Joly B, Reynaud D, Paul G, Martel JL, Sirot D, Cluzel R, Nevot P (1986c) Characterization of a beta-lactamase from Pasteurella multocida. Ann Inst Pasteur Microbiol 137 [A]: 153–158Google Scholar
  105. Pitton JS, Heitz M, Labia R (1978) Characterization of two new beta-lactamases from Klebsiella spp. Current Chemotherapy — 10th International Congress, pp 482–484Google Scholar
  106. Pollock MR (1964) Stimulating and inhibiting antibodies for bacterial penicillinase Immu-nology 7: 707–723Google Scholar
  107. Reid AJ, Amyes SGB (1986) Plasmid penicillin resistance in Vibrio cholerae: identification of new beta-lactamase SAR-1. Antimicrob Agents Chemother 30: 245–247PubMedGoogle Scholar
  108. Richmond MH (1965) Wild-type variants of exopenicillinase from Staphylococcus aureus. Biochem J 94: 584–593PubMedGoogle Scholar
  109. Rosdahl VT (1973) Naturally occurring constitutive beta-lactamase of novel serotype in Staphylococcus aureus. J Gen Microbiol 77: 229–231PubMedGoogle Scholar
  110. Roy C, Foz A, Segura C, Tirado M, Fuster C, Reig R (1983) Plasmid-determined betalactamases identified in a group of 204 ampicillin-resistant Enterobacteriaceae. J Antimicrob Chemother 12: 507–510PubMedGoogle Scholar
  111. Roy C, Segura C, Tirado M, Reig R, Hermida M, Teruel D, Foz A (1985) Frequency of plasmid-determined beta-lactamases in 680 consecutively isolated strains of Enterobacteriaceae. Eur J Clin Microbiol 4: 146–147PubMedGoogle Scholar
  112. Rubens CE, McNeill WF, Farrar WE Jr (1979) Evolution of multiple-antibiotic-resistance plasmids mediated by transposable plasmid deoxyribonucleic acid sequences. J Bacteriol 140: 713–719PubMedGoogle Scholar
  113. Rubin LG, Medeiros AA, Yolken RH, Moxon ER (1981) Ampicillin treatment failure of apparently beta-lactamase-negative Haemophilus influenzae type B meningitis due to novel beta-lactamase. Lancet 2: 1008–1010PubMedGoogle Scholar
  114. Samraoui B, Sutton BJ, Todd RJ, Artymiuk PJ, et al. (1986) Tertiary structural similarity between a class A beta-lactamase and a penicillin-sensitive L-alanyl carboxypeptidasetranspeptidase. Nature 320: 378–380PubMedGoogle Scholar
  115. Sanders CC, Sanders WE Jr, Moland ES (1986) Characterization of beta-lactamases in situ on polyacrylamide gels. Antimicrob Agents Chemother 30: 951–952PubMedGoogle Scholar
  116. Sato K, Matsuura Y, Inoue M, Mitsuhashi S (1983) Properties of a new penicillinase type produced by Bacteriodes fragilis. Antimicrob Agents Chemother 22: 579–584Google Scholar
  117. Sawai T, Mitsuhashi S, Yamagishi S (1968) Comparison of beta-lactamases in gram-neg-ative rod bacteria resistant to p-aminobenzylpenicillin. Jpn J Microbiol 12: 423–434PubMedGoogle Scholar
  118. Shah PM, Stille W (1983) Escherichia coli and Klebsiella pneumoniae strains more susceptible to cefoxitin than to third generation cephalosporins. J Antimicrob Chemother 11: 597–601Google Scholar
  119. Shaokat S, Ouellette M, Sirot D, Joly B, Cluzel R (1987) Spread of SHV-1 beta-lactamase in Escherichia coli isolated from fecal samples in Africa. Antimicrob Agents Chemother 31: 943–945PubMedGoogle Scholar
  120. Shlaes DM, Medeiros AA, Kron MA, Currie-McCumber C, Papa E, Vartian CV (1986) Novel plasmid-mediated beta-lactamase in members of the family Enterobacteriaceae from Ohio. Antimicrob Agents Chemother 30: 220–224PubMedGoogle Scholar
  121. Simpson IN, Harper PB, O’Callaghan CH (1980) Principal beta-lactamases responsible for resistance to beta-lactam antibiotics in urinary tract infections. Antimicrob Agents Chemother 17: 929–936PubMedGoogle Scholar
  122. Simpson IN, Plested SJ, Harper PB (1982) Investigation of the beta-lactamase stability of ceftazidime and eight other new cephalosporin antibiotics. J Antimicrob Chemother 9: 357–368PubMedGoogle Scholar
  123. Simpson IN, Plested SJ, Budin-Jones MJ, Lees J, Hedges RW, Jacoby GA (1983) Characterization of a novel plasmid-mediated beta-lactamase and its contribution to beta-lactam resistance in Pseudomonas aeruginosa. FEMS Microbiol Lett 19: 23–27Google Scholar
  124. Simpson IN, Knoth H, Plested SJ, Harper PB (1986) Qualitative and quantitative aspects of beta-lactamase production as mechanisms of beta-lactam resistance in a survey of clinical isolates from faecal samples. J Antimicrob Chemother 17: 725–737PubMedGoogle Scholar
  125. Sinclair MI, Holloway BW (1982) A chromosomally located transposon in Pseudomonas aeruginosa. J Bacteriol 151: 569–579PubMedGoogle Scholar
  126. Sirot J, Labia R, Thabaut A (1987a) Klebsiella pneumoniae strains more resistant to ceftazidime than to other third-generation cephalosporins. J Antimicrob Chemother 20: 611–612Google Scholar
  127. Sirot D, Sirot J, Labia R, et al. (1987b) Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J Antimicrob Chemother 20: 323–334PubMedGoogle Scholar
  128. Sutcliffe JG (1978) Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci USA 75: 3737–3741PubMedGoogle Scholar
  129. Sykes RB, Matthew M (1976) The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. J Antimicrob Chemother 2: 115–157PubMedGoogle Scholar
  130. Sykes RB, Matthew M (1979) Detection, assay and immunology of beta-lactamases. In: Hamilton-Miller JMT, Smith JT (eds) Beta-lactamases. Academic Press, London, pp 17–49Google Scholar
  131. Takahashi I, Tsukamoto K, Harada M, Sawai T (1983) Carbenicillin-hydrolyzing penicillinases of Proteus mirabilis and the PSE-type penicillinases of Pseudomonas aeruginosa. Microbiol Immunol 27: 995–1004PubMedGoogle Scholar
  132. Thabaut A, Philippon A, Meyran M (1985) Beta-lactamases of Pseudomonas aeruginosa and susceptibility against beta-lactam antibiotics. Chemioterapia 5: 36–42Google Scholar
  133. Thornsberry C, McDougal LK (1982) Ampicillin-resistant Haemophilus influenzae: incidence, mechanism, and detection. Postgrad Med 71: 135–145Google Scholar
  134. Tirado M, Roy C, Segura C, Reig R, Hermida M, Foz A (1986) Incidence of strains producing plasmid determined beta-lactamases among carbenicillin resistant Pseudomonas aeruginosa. J Antimicrob Chemother 18: 453–458PubMedGoogle Scholar
  135. Ubukata K, Yamashita N, Konno M (1985) Occurrence of a beta-lactam-inducible penicillin-binding protein in methicillin-resistant staphylococci. Antimicrob Agents Chemother 27: 851–857PubMedGoogle Scholar
  136. Vecoli C, Prevost FE, Ververis JJ, Medeiros AA, O’Leary GP Jr (1983) A comparison of polyacrylamide and agarose gel thin-layer isoelectric focusing for the characterization of beta-lactamase. Antimicrob Agents Chemother 24: 186–189PubMedGoogle Scholar
  137. Wang P-Z, Novick RP (1987) Nucleotide sequence and expression of the beta-lactamase gene from Staphylococcus aureus plasmid pI258 in Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. J Bacteriol 169: 1763–1766PubMedGoogle Scholar
  138. Waxman DJ, Amanuma H, Strominger JL (1979) Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial L-alanine carboxypeptidases. Proc Natl Acad Sci USA 76: 2730–2734PubMedGoogle Scholar
  139. Waxman DJ, Amanuma H, Strominger JL (1982) Amino acid sequence homologies between Escherichia coli penicillin-binding protein 5 and class A beta-lactamases. FEBS Lett 139: 159–163PubMedGoogle Scholar
  140. Whitaker S, Hajipieris P, Williams JD (1983) Distribution and type of beta-lactamase amongst 1000 gram-negative rod bacteria. Proc 13th Int Congr Chemother 89: 10–11Google Scholar
  141. Williams RJ, Livermore DM, Lindridge MA, Said AA, Williams JD (1984) Mechanisms of beta-lactam resistance in British isolates of Pseudomonas aeruginosa. J Med Microbiol 17: 283–293PubMedGoogle Scholar
  142. Yamamoto T, Tanaka M, Nohara C, Fukunaga Y, Yamagishi S (1981) Transposition of the oxacillin-hydrolyzing penicillinase gene. J Bacteriol 145: 808–813PubMedGoogle Scholar
  143. Yang YJ, Livermore DM, Jones CS (1985) LXA-1, a new plasmid determined beta-lactamase from enterobacteria. Abstr 2nd Eur Congr Cl in MicrobiolGoogle Scholar
  144. Yocum RR, Waxman DJ, Rasmussen JR, Strominger JL (1979) Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial L-alanine carboxypeptidases. Proc Natl Acad Sci USA 76: 2730–2734PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • A. A. Medeiros

There are no affiliations available

Personalised recommendations