Skip to main content

Plasmid-Determined Beta-Lactamases

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 91))

Abstract

The resistance of bacterial isolates to beta-lactam antibiotics is due principally to the production of beta-lactamases. Some beta-lactamases are determined by genes on the bacterial chromosome and others by genes on plasmids that can transfer from one species to another (Datta and Kontomichalou 1965). Moreover, twelve plasmid-determined beta-lactamases are known so far to be encoded by transposons (Table 1), genetic elements that can transfer from one plasmid to another and to and from plasmids and the bacterial chromosome (Hedges and Jacob 1974).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham EP, Chain E (1940) An enyzme from bacteria able to destroy penicillin. Nature 373: 837

    Google Scholar 

  • Amaral L, Lee Y, Schwarz U, Lorian V (1986) Penicillin-binding site on the Escherichia coli cell envelope. J Bacteriol 167: 492–495

    PubMed  CAS  Google Scholar 

  • Ambler RP (1980) The structure of beta-lactamases. Philos Trans R Soc Lond 289: 321–331

    CAS  Google Scholar 

  • Ambler RP, Scott GK (1978) Partial amino acid sequence of penicillinase coded by Escherichia coli plasmid R6K. Proc Natl Acad Sci USA 75: 3732–3736

    PubMed  CAS  Google Scholar 

  • Arakawa Y, Ohta M, Kido N, Fujii Y, Komatsu T, Kato N (1986) Close evolutionary relationship between the chromosomally encoded beta-lactamase gene of Klebsiella pneumoniae and the TEM beta-lactamase gene mediated by R plasmids. FEBS Lett 207: 6974

    Google Scholar 

  • Barthelemy M, Peduzzi J, Labia R (1985) Distinction between the primary structures of TEM-1 and TEM-2 beta-lactamases. Ann Inst Pasteur Microbiol 136 [A]: 311–321

    Google Scholar 

  • Barthelemy M, Peduzzi J, Labia R (1987) N-terminal amino acid sequence of PIT-2 beta-lactamase (SHV-1). J Antimicrob Chemother 19: 839–852

    PubMed  CAS  Google Scholar 

  • Bauernfeind A, Horl G (1987) Novel R-factor borne beta-lactamase of Escherichia coli conferring resistance to cephalosporins. Infection 15: 257–259

    PubMed  CAS  Google Scholar 

  • Bauernfeind A, Shah P, Petermuller C, Motz M (1985) Plasmid-determined resistance to third generation cephalosporins in enterobacteria. Chemioterapia 4: 30–31

    Google Scholar 

  • Bergstrom S, Olsson O, Normark S (1982) Common evolutionary origin of chromosomal beta-lactamase genes in enterobacteria. J Bacteriol 150: 528–534

    PubMed  CAS  Google Scholar 

  • Bobrowski MM, Matthew M, Barth PT, Datta N, Grinter NJ, Jacob AE, Kontomichalou P, Dale JW, Smith JT (1976) Plasmid-determined beta-lactamase indistinguishable from the chromosomal beta-lactamase of Escherichia coli. J Bacteriol 125: 149–157

    PubMed  CAS  Google Scholar 

  • Boissinot M, Mercier J, Levesque RC (1987) Development of natural and synthetic DNA probes for OXA-2 and TEM-1 beta-lactamases. Antimicrob Agents Chemother 31: 728–734

    PubMed  CAS  Google Scholar 

  • Boyce JM, Medeiros AA (1987) Role of beta-lactamase in expression of resistance by meth- icillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 31: 1426–1428

    PubMed  CAS  Google Scholar 

  • Brun-Buisson C, Legrand P, Philippon A, Montravers F, Ansquer M, Duval J (1987) Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet 2: 302–306

    PubMed  CAS  Google Scholar 

  • Centers for Disease Control (1982) Global distribution of penicillinase-producing Neisseria gonorrhoeae (PPNG). Conn Med 42: 223

    Google Scholar 

  • Chambers HF, Hartman BJ, Tomasz A (1985) Increased amounts of a novel penicillin-binding protein in a strain of methicillin-resistant Staphylococcus aureus exposed to nafcillin. J Clin Invest 76: 325–331

    PubMed  CAS  Google Scholar 

  • Chan PT (1986) Nucleotide sequence of the Staphylococcus aureus PC1 beta-lactamase gene. Nucleic Acids Res 14: 59–40

    Google Scholar 

  • Chen S-T, Clowes RC (1987) Nucleotide sequence comparisons of plasmids pHD131, pJB1, pFA3, and pFA7 and beta-lactamase expression in Escherichia coli, Haemophilus influenzae, and Neisseria gonorrhoeae. J Bacteriol 169: 3124–3130

    PubMed  CAS  Google Scholar 

  • Cooksey RC, Clark NC, Thornsberry C (1985) A gene probe for TEM type beta-lactamases. Antimicrob Agents Chemother 28: 154–156

    PubMed  CAS  Google Scholar 

  • Coulson A (1985) Beta-lactamases: molecular studies. Biotechnol Genet Eng Rev 3: 219–253

    PubMed  CAS  Google Scholar 

  • Cullmann W, Flensberg T, Opferkuch W, Stieglitz M, Wiedemann B (1982) Correlation of beta-lactamase production and resistance to beta-lactam antibiotics in Enterobacteriaceae. Zentralbl Bakteriol Mikrobiol Hyg 252: 480–489

    CAS  Google Scholar 

  • Cullmann W, Opferkuch W, Steiglitz M, Dick W (1984) Influence of spontaneous and inducible beta-lactamase production on the antimicrobial activity of recently developed beta-lactam compounds. Chemotherapy 30: 175–181

    PubMed  CAS  Google Scholar 

  • Dale JW, Smith JT (1976) The dimeric nature of an R-factor mediated beta-lactamase. Biochem Biophys Res Commun 68: 1000–1005

    PubMed  CAS  Google Scholar 

  • Dale JW, Goodwin D, Mossakowska D, Stephenson P, Wall S (1985) Sequence of the OXA-2 beta-lactamase: comparison with other penicillin-reactive enzymes. FEBS Lett 191: 39–44

    PubMed  CAS  Google Scholar 

  • Datta N, Kontomichalou P (1965) Penicillinase synthesis controlled by infectious R-factors in Enterobacteriaceae. Nature 208: 239–241

    PubMed  CAS  Google Scholar 

  • Dyke KGH (1979) Beta-lactamases of Staphylococcus aureus. In: Hamilton-Miller JMT, Smith JT (eds) Beta-lactamases. Academic Press, London, pp 291–310

    Google Scholar 

  • Eliasson I, Kamme C (1985) Characterization of the plasmid-mediated beta-lactamase in Branhamella catarrhalis, with special reference to substrate affinity. J Antimicrob Chemother 15: 139–149

    PubMed  CAS  Google Scholar 

  • Esposito S, Galante D, Barba D, Pennucci D, Limauro D (1985) Correlation of beta-lactamase stability and antibacterial activity of beta-lactams in beta-lactamase-producing bacteria and respective transconjugants. Chemioterapia 4: 33–35

    Google Scholar 

  • Goering RV, Ruff EA (1983) Comparative analysis of conjugative plasmids mediating gentamicin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 24: 450–452

    PubMed  CAS  Google Scholar 

  • Goussard S, Sougakoff W, Gerbaud G, Courvalin P (1987) CTX-1, a wide-substrate-range enzyme, is a derivative of a TEM beta-lactamase. Program and abstracts of the twenty-seventh interscience conference on antimicrobial agents and chemotherapy. American Society for Microbiology, New York, No 517

    Google Scholar 

  • Guttmann L, Kitzes MD, Billot-Klein MD, Goldstein FW, Tran Van Nhieu, Collatz R (1987) New plasmid-mediated TEM-derived beta-lactamase hydrolyzing ceftazidime. Program and abstracts of the twenty-seventh interscience conference on antimicrobial agents and chemotherapy, American Society for Microbiology, New York, No 518

    Google Scholar 

  • Hedge PJ, Spratt BG (1985) Resistance to beta-lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein. Nature 318: 478–480

    PubMed  CAS  Google Scholar 

  • Hedges RW, Jacob AE (1974) Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet 132: 31–40

    PubMed  CAS  Google Scholar 

  • Hedges RW, Matthew M, Smith DI, Cresswell JM, Jacob AE (1977) Properties of a transposon conferring resistance to penicillins and streptomycin. Gene 1: 241–253

    PubMed  CAS  Google Scholar 

  • Hedges RW, Medeiros AA, Cohenford M, Jacoby GA (1985) Genetic and biochemical properties of AER-1, a novel carbenicillin-hydrolyzing beta-lactamase from Aeromonas hydrophila. Antimicrob Agents Chemother 27: 479–484

    PubMed  CAS  Google Scholar 

  • Herzberg O, Moult J (1987) Bacterial resistance to beta-lactam antibiotics: crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.5. A resolution. Science 236: 694–701

    PubMed  CAS  Google Scholar 

  • Holland S, Dale JW (1985) Immunological comparison between OXA-2 beta-lactamase and those mediated by other R plasmids. Antimicrob Agents Chemother 27: 989–991

    PubMed  CAS  Google Scholar 

  • Huovinen P, Huovinen S, Jacoby GA (1988a) The sequence of PSE-2 beta-lactamase. Antimicrob Agents Chemother 32: 134–136

    PubMed  CAS  Google Scholar 

  • Huovinen S, Huovinen P, Jacoby GA (1988b) Detection of plasmid-mediated beta-lactamases using DNA probes. Antimicrob Agents Chemother 32: 175–179

    PubMed  CAS  Google Scholar 

  • Jack GW, Richmond MH (1970) A comparative study of eight distinct beta-lactamases synthesized by gram-negative bacteria. J Gen Microbiol 61: 43–61

    PubMed  CAS  Google Scholar 

  • Jacoby GA, Sutton L (1985) Beta-lactamases and beta-lactam resistance in Escherichia coli. Antimicrobial Agents Chemother 28: 703–705

    CAS  Google Scholar 

  • Jaurin B, Grundstrom T (1981) Amp C cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci USA 78: 4897–4901

    PubMed  CAS  Google Scholar 

  • Joly B, Delmas C, Rich C, Prere MF, Livrelli V, Dabernat H (1987) Un nouveau mécanisme de résistance à l’ampicilline par production de beta-lactamase ROB-1 chez une souche d’Haemophilus influenzae isolée en France. Presse Méd 16: 916–917

    PubMed  CAS  Google Scholar 

  • Jouvenot M, Bonin P, Michel-Briand Y (1983) Frequency of beta-lactamases that are markedly active against carbenicillin in the Pseudomonas aeruginosa strains isolated in a Medical School Hospital. J Antimicrob Chemother 12: 451–458

    PubMed  CAS  Google Scholar 

  • Jouvenot M, Deschaseaux ML, Royez M, Mougin C, Cooksey RC, Michel-Briand Y, Adessi GL (1987) Molecular hybridization versus isoelectric focusing to determine TEM-type beta-lactamases in gram-negative bacteria. Antimicrob Agents Chemother 31: 300–305

    PubMed  CAS  Google Scholar 

  • Katsu K, Inoue M, Mitsuhashi S (1981) Plasmid-mediated carbenicillin hydrolyzing betalactamases of Proteus mirabilis. J Antibiot 43: 1504–1506

    Google Scholar 

  • Kelly JA, Kideberg O, Charlier P, Wery JP, et al. (1986) On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 231: 1413–1429

    Google Scholar 

  • Kliebe C, Nies BA, Meyer JF, Tolxdorff-Neutzling RM, Wiedemann B (1985) Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother 28: 302–307

    PubMed  CAS  Google Scholar 

  • Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S (1983) Transferable resistance to cefotaxmine, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11: 315–317

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Fang Zhu Y, Nicholls NJ, Oliver Lampen J (1987) A second regulatory gene, blaRl, encoding a potential penicillin-binding protein required for induction of betalactamase in Bacillus licheniformis. J Bacteriol 169: 3873–3878

    PubMed  CAS  Google Scholar 

  • Kopecko DJ, Brevet J, Cohen SN (1976) Involvement of multiple translocating DNA segments and recombinational hotspots in the structural evolution of bacterial plasmids. J Mol Biol 108: 333–360

    PubMed  CAS  Google Scholar 

  • Kratz J, Schmidt F, Wiedemann B (1983) Transposition of a gene encoding OXA-2 betalactamase. J Gen Microbiol 129: 2951–2957

    PubMed  CAS  Google Scholar 

  • Kron MA, Shlaes DM, Currie-McMumber C, Medeiros AA (1987) Molecular epidemiology of OHIO-1 beta-lactamase. Antimicrob Agents Chemother 31: 2007–2009

    PubMed  CAS  Google Scholar 

  • Labia R, Fabre C, Masson J-M, Barthelemy M (1979) Klebsiella pneumoniae strains moderately resistant to ampicillin and carbenicillin: characterization of a new beta-lactamase. J Antimicrob Chemother 5: 375–382

    Google Scholar 

  • Labia R, Guionie M, Barthelemy M, Philippon A (1981) Properties of three carbenicillinhydrolyzing beta-lactamases (CARB) from Pseudomonas aeruginosa: identification of a new enzyme. J Antimicrob Chemother 7: 49–56

    PubMed  CAS  Google Scholar 

  • Levesque R, Roy PH (1982) Mapping of the plasmid (pLQ3) from Achromobacter and cloning of its cephalosporinase gene in Escherichia coli. Gene 18: 69–75

    PubMed  CAS  Google Scholar 

  • Levesque R, Roy PH, Letarte R, Pechere JC (1982) A plasmid-mediated cephalosporinase from Achromobacter species. J Infect Dis 145: 753–761

    PubMed  CAS  Google Scholar 

  • Levesque R, Roy PH, Letarte R, Pechere JC (1982) A plasmid-mediated cephalosporinase from Achromobacter species. J Infect Dis 145: 753–761

    PubMed  CAS  Google Scholar 

  • Levesque RC, Medeiros AA, Jacoby GA (1987) Molecular cloning and DNA homology of plasmid-mediated beta-lactamase genes. MGG 206: 252–258

    PubMed  CAS  Google Scholar 

  • Livermore DM, Jones CS (1986) Characterization of NPS-1, a novel plasmid-mediated beta-lactamase from two Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 29: 99–103

    PubMed  CAS  Google Scholar 

  • Livermore DM, Pitt TL, Jones CS, Crees-Morris JA, Williams RJ (1985) PSE-4 beta-lactamase: a serotype-specific enzyme in Pseudomonas aeruginosa. J Med Microbiol 19: 45–53

    PubMed  CAS  Google Scholar 

  • Livermore DM, Moosdeen F, Lindridge MA, Ko P, Williams JD (1986) Behaviour of TEM-1 beta-lactamase as a resistance mechanism to ampicillin, mezlocillin and azlocillin in Escherichia coli. J Antimicrob Chemother 17: 139–146

    PubMed  CAS  Google Scholar 

  • Marre R, Borner K, Schulz E (1984) Different mechanisms of TEM-1 and OXA-1 mediated resistance to piperacillin in E. coli. Zentralbl Bakteriol Mikrobiol Hyg 58: 287–295

    Google Scholar 

  • Matthew M (1979) Plasmid-mediated beta-lactamase of gram-negative bacteria: properties and distribution. J Antimicrob Chemother 5: 349–358

    PubMed  CAS  Google Scholar 

  • Matthew M, Harris AM (1976) Identification of beta-lactamases by analytical isoelectric focusing: correlation with bacterial taxonomy. J Gen Microbiol 94: 55–67

    PubMed  CAS  Google Scholar 

  • Matthew M, Sykes RB (1977) Properties of the beta-lactamase specified by the Pseudomo-nas plasmid RPL11. J Bacteriol 132: 341–345

    PubMed  CAS  Google Scholar 

  • Matthew M, Harris AM, Marshall MJ, Ross GW (1975) The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol 88: 169–178

    Google Scholar 

  • Matthew M, Hedges RW, Smith JT (1979) Types of beta-lactamase determined by plasmids in gram-negative bacteria. J Bacteriol 138: 657–662

    PubMed  CAS  Google Scholar 

  • McDonnell RW, Sweendy HM, Cohen 5 (1983) Conjugational transfer of gentamicin resistance plasmids intra-and interspecifically in Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 23: 151–160

    CAS  Google Scholar 

  • Medeiros AA (1984) Beta-lactamases. Br Med Bull 40: 18–27

    PubMed  CAS  Google Scholar 

  • Medeiros AA, Jacoby GA (1986) Beta-lactamase-mediated resistance. In: Queener SF, Webber JA, Queener SW (eds) Beta-lactam antibiotics for clinical use. Dekker, New York, pp 49–84

    Google Scholar 

  • Medeiros AA, O’Brien TF (1975) Ampicillin-resistant Haemophilus influenzae type b possessing a TEM-type beta-lactamase but little permeability barrier to ampicillin. Lancet 2: 716

    Google Scholar 

  • Medeiros AA, Kent RL, O’Brien TF (1974) Characterization and prevalence of the different mechanisms of resistance to beta-lactam antibiotics in clinical isolates of Escherichia coli. Antimicrob Agents Chemother 6: 791–801

    PubMed  CAS  Google Scholar 

  • Medeiros AA, Ximenez J, Blickstein-Goldworm K, O’Brien TF, Acar J (1980) Beta-lactamases of ampicillin-resistant Escherichia coli from Brazil, France and the United States. In: Nelson JD, Grassi C (eds) Current chemotherapy and infectious diseases. American Society for Microbiology, Washington DC, pp 761–762

    Google Scholar 

  • Medeiros AA, Gilleece ES, O’Brien TF (1981) Distribution of plasmid type beta-lactamases in ampicillin-resistant salmonellae from humans and animals in the United States. In: Levy S, Clowes R, Koenig E (eds) Molecular biology, pathogenicity, and ecology of bacterial plasmids. Plenum, New York, p 634

    Google Scholar 

  • Medeiros AA, Hedges RW, Jacoby GA (1982) Spread of a “Pseudomonas-specific” betalactamase to plasmids of enterobacteria. J Bacteriol 149: 700–707

    PubMed  CAS  Google Scholar 

  • Medeiros AA, Cohenford M, Jacoby GA (1985) Five novel plasmid-determined beta-lactamases. Antimicrob Agents Chemother 27: 715–719

    PubMed  CAS  Google Scholar 

  • Medeiros AA, Levesque R, Jacoby GA (1986) An animal source for the ROB-1 beta-lac- tamase of Haemophilus influenzae type b. Antimicrob Agents Chemother 29: 212–215

    PubMed  CAS  Google Scholar 

  • Medeiros AA, O’Brien TF, Rosenberg EY, Nikaido H (1987) Loss of OmpC in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J Infect Dis 156: 751–757

    PubMed  CAS  Google Scholar 

  • Morin CJ, Patel PC, Levesque RC, Letarte R (1987) Monoclonal antibodies to TEM-1 plasmid-mediated beta-lactamase. Antimicrob Agents Chemother 31: 1761–1767

    PubMed  CAS  Google Scholar 

  • Moxon ER, Medeiros AA, O’Brien TF (1977) Beta-lactamase effect on ampicillin treatment of Haemophilus influenzae b bacteremia and meningitis in infant rats. Antimicrob Agents Chemother 12: 461–464

    PubMed  CAS  Google Scholar 

  • Murphy D, Todd J (1979) Treatment of ampicillin-resistant Haemophilus influenzae in soft tissue infections with high doses of ampicillin. J Pediatr 94: 983–987

    PubMed  CAS  Google Scholar 

  • Murray BE, Mederski-Samoraj B (1983) Transferrable beta-lactamase. A new mechanism for in vitro penicillin resistance in Streptococcus faecalis. J Clin Invest 72: 1168–1171

    PubMed  CAS  Google Scholar 

  • Murray BE, Mederski-Samoraj B, Foster SK, Brunton JL, Harford P (1986a) In vitro studies of plasmid-mediated penicillinase from Streptococcus faecalis suggest a staphylococcal origin. J Clin Invest 77: 289–293

    PubMed  CAS  Google Scholar 

  • Murray BE, Church DA, Wanger A, Zscheck K, Levison ME, Ingerman MJ, Abrutyn E, Mederski-Samoraj B (1986b) Comparison of two beta-lactamase-producing strains of Streptococcus faecalis. Antimicrob Agents Chemother 30: 861–864

    PubMed  CAS  Google Scholar 

  • Nielsen JBK, Lampen JO (1982) Glyceride-cysteine lipoproteins and secretion by gram-positive bacteria. J Bacteriol 152: 315–322

    PubMed  CAS  Google Scholar 

  • Nikaido H (1985) Role of permeability barriers in resistance to beta-lactam antibiotics. Pharmacol Ther 27: 197–231

    PubMed  CAS  Google Scholar 

  • Nugent ME, Hedges RW (1979) The nature of the genetic determinant for the SHV-1 betalactamase. Mol Gen Genet 175: 239–243

    PubMed  CAS  Google Scholar 

  • O’Brien TF, Hopkins JD, Gilleece ES, Medeiros AA, Kent RL, Blackburn BO, Holmes MB, Reardon JP, Vergeront JM, Schell WL, Christenson E, Bissett ML, Morse EV (1982) Molecular epidemiology of antibiotic resistance in salmonella from animals and human beings in the United States. N Engl J Med 307: 1–6

    PubMed  Google Scholar 

  • Ouellette M, Roy PH (1986) Analysis by using DNA probes of the OXA-1 beta-lactamase gene and its transposon. Antimicrob Agents Chemother 30: 46–51

    PubMed  CAS  Google Scholar 

  • Ouellette M, Bissonnette L, Roy PH (1987a) Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc Natl Acad Sci USA 84: 7378–7382

    PubMed  CAS  Google Scholar 

  • Ouellette M, Rossi JJ, Bazin R, Roy PH (1987b) Oligonucleotide probes for the detection of TEM-1 and TEM-2 beta-lactamase genes and their transposons. Can J Microbiol 33: 205–211

    PubMed  CAS  Google Scholar 

  • Pagani L, Perduca M, Romero E (1982) Prevalence and distribution of R plasmid-mediated beta-lactamases in Enterobacteriaceae. Microbiologica 5: 179–184

    PubMed  CAS  Google Scholar 

  • Paul G, Philippon A, Barthelemy M, Labia R, Nevot P (1981) Immunological distinction between constitutive beta-lactamases of gram-negative rods with antisera TEM-1 and CARB-3. Program and abstracts of the 21st interscience conference on antimicrobial agents and chemotherapy. American Society for Microbiology, Chicago, No 681

    Google Scholar 

  • Paul G, Philippon A, Nevot P (1985) Immunological identification of beta-lactamases: specificity of an immune serum anti-OXA-2. Chemioterapia 4: 31–33

    Google Scholar 

  • Percival A, Brumfitt W, de Louvois J (1963) The role of penicillinase in determining natural and acquired resistance of gram-negative bacteria to penicillins. J Gen Microbiol 32: 77–89

    PubMed  CAS  Google Scholar 

  • Percival A, Rowlands J, Corkhill JE, Alergant CD, Arya OP, Rees E (1976) Penicillinaseproducing gonococci in Liverpool. Lancet 2: 1379–1382

    PubMed  CAS  Google Scholar 

  • Penne PI, Schalla W, Siegel MS; Thornsberry C, Biddle J, Wong K-H, Thompson SE (1977) Evidence for two distinct types of penicillinase-producing Neisseria gonorrhoeae. Lancet 2: 993–995

    Google Scholar 

  • Philippon AM, Paul GC, Jacoby GA (1983) Properties of PSE-2 beta-lactamase and genetic basis for its production in Pseudomonas aeruginosa. Antimicrob Agents Chemother 24: 362–369

    PubMed  CAS  Google Scholar 

  • Philippon A, Thabaut A, Meyran M, Nevot P (1984a) Distribution des beta-lactamases constitutives chez Pseudomonas aeruginosa. Presse Méd 13: 772–776

    PubMed  CAS  Google Scholar 

  • Philippon A, Fournier G, Cornel E, Paul G, LeMinor L, Nevot P (1984b) Les beta-lacta- mases des Salmonella résistantes à l’ampicilline. Ann Microbiol (Paris) 135: 229–238

    Google Scholar 

  • Philippon AM, Paul GC, Jacoby GA (1986a) New plasmid-mediated oxacillin-hydrolyzing beta-lactamase in Pseudomonas aeruginosa. J Antimicrob Chemother 17: 415–422

    PubMed  CAS  Google Scholar 

  • Philippon AM, Paul GC, Thabaut AP, Jacoby GA (1986b) Properties of a novel carbenicillin-hydrolyzing beta-lactamase (CARB-4) specified by an IncP-2 plasmid from Pseudomonas aeruginosa. Antimicrob Agents Chemother 29: 519–520

    PubMed  CAS  Google Scholar 

  • Philippon A, Joly B, Reynaud D, Paul G, Martel JL, Sirot D, Cluzel R, Nevot P (1986c) Characterization of a beta-lactamase from Pasteurella multocida. Ann Inst Pasteur Microbiol 137 [A]: 153–158

    Google Scholar 

  • Pitton JS, Heitz M, Labia R (1978) Characterization of two new beta-lactamases from Klebsiella spp. Current Chemotherapy — 10th International Congress, pp 482–484

    Google Scholar 

  • Pollock MR (1964) Stimulating and inhibiting antibodies for bacterial penicillinase Immu-nology 7: 707–723

    CAS  Google Scholar 

  • Reid AJ, Amyes SGB (1986) Plasmid penicillin resistance in Vibrio cholerae: identification of new beta-lactamase SAR-1. Antimicrob Agents Chemother 30: 245–247

    PubMed  CAS  Google Scholar 

  • Richmond MH (1965) Wild-type variants of exopenicillinase from Staphylococcus aureus. Biochem J 94: 584–593

    PubMed  CAS  Google Scholar 

  • Rosdahl VT (1973) Naturally occurring constitutive beta-lactamase of novel serotype in Staphylococcus aureus. J Gen Microbiol 77: 229–231

    PubMed  CAS  Google Scholar 

  • Roy C, Foz A, Segura C, Tirado M, Fuster C, Reig R (1983) Plasmid-determined betalactamases identified in a group of 204 ampicillin-resistant Enterobacteriaceae. J Antimicrob Chemother 12: 507–510

    PubMed  CAS  Google Scholar 

  • Roy C, Segura C, Tirado M, Reig R, Hermida M, Teruel D, Foz A (1985) Frequency of plasmid-determined beta-lactamases in 680 consecutively isolated strains of Enterobacteriaceae. Eur J Clin Microbiol 4: 146–147

    PubMed  CAS  Google Scholar 

  • Rubens CE, McNeill WF, Farrar WE Jr (1979) Evolution of multiple-antibiotic-resistance plasmids mediated by transposable plasmid deoxyribonucleic acid sequences. J Bacteriol 140: 713–719

    PubMed  CAS  Google Scholar 

  • Rubin LG, Medeiros AA, Yolken RH, Moxon ER (1981) Ampicillin treatment failure of apparently beta-lactamase-negative Haemophilus influenzae type B meningitis due to novel beta-lactamase. Lancet 2: 1008–1010

    PubMed  CAS  Google Scholar 

  • Samraoui B, Sutton BJ, Todd RJ, Artymiuk PJ, et al. (1986) Tertiary structural similarity between a class A beta-lactamase and a penicillin-sensitive L-alanyl carboxypeptidasetranspeptidase. Nature 320: 378–380

    PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders WE Jr, Moland ES (1986) Characterization of beta-lactamases in situ on polyacrylamide gels. Antimicrob Agents Chemother 30: 951–952

    PubMed  CAS  Google Scholar 

  • Sato K, Matsuura Y, Inoue M, Mitsuhashi S (1983) Properties of a new penicillinase type produced by Bacteriodes fragilis. Antimicrob Agents Chemother 22: 579–584

    Google Scholar 

  • Sawai T, Mitsuhashi S, Yamagishi S (1968) Comparison of beta-lactamases in gram-neg-ative rod bacteria resistant to p-aminobenzylpenicillin. Jpn J Microbiol 12: 423–434

    PubMed  CAS  Google Scholar 

  • Shah PM, Stille W (1983) Escherichia coli and Klebsiella pneumoniae strains more susceptible to cefoxitin than to third generation cephalosporins. J Antimicrob Chemother 11: 597–601

    Google Scholar 

  • Shaokat S, Ouellette M, Sirot D, Joly B, Cluzel R (1987) Spread of SHV-1 beta-lactamase in Escherichia coli isolated from fecal samples in Africa. Antimicrob Agents Chemother 31: 943–945

    PubMed  CAS  Google Scholar 

  • Shlaes DM, Medeiros AA, Kron MA, Currie-McCumber C, Papa E, Vartian CV (1986) Novel plasmid-mediated beta-lactamase in members of the family Enterobacteriaceae from Ohio. Antimicrob Agents Chemother 30: 220–224

    PubMed  CAS  Google Scholar 

  • Simpson IN, Harper PB, O’Callaghan CH (1980) Principal beta-lactamases responsible for resistance to beta-lactam antibiotics in urinary tract infections. Antimicrob Agents Chemother 17: 929–936

    PubMed  CAS  Google Scholar 

  • Simpson IN, Plested SJ, Harper PB (1982) Investigation of the beta-lactamase stability of ceftazidime and eight other new cephalosporin antibiotics. J Antimicrob Chemother 9: 357–368

    PubMed  CAS  Google Scholar 

  • Simpson IN, Plested SJ, Budin-Jones MJ, Lees J, Hedges RW, Jacoby GA (1983) Characterization of a novel plasmid-mediated beta-lactamase and its contribution to beta-lactam resistance in Pseudomonas aeruginosa. FEMS Microbiol Lett 19: 23–27

    CAS  Google Scholar 

  • Simpson IN, Knoth H, Plested SJ, Harper PB (1986) Qualitative and quantitative aspects of beta-lactamase production as mechanisms of beta-lactam resistance in a survey of clinical isolates from faecal samples. J Antimicrob Chemother 17: 725–737

    PubMed  CAS  Google Scholar 

  • Sinclair MI, Holloway BW (1982) A chromosomally located transposon in Pseudomonas aeruginosa. J Bacteriol 151: 569–579

    PubMed  CAS  Google Scholar 

  • Sirot J, Labia R, Thabaut A (1987a) Klebsiella pneumoniae strains more resistant to ceftazidime than to other third-generation cephalosporins. J Antimicrob Chemother 20: 611–612

    Google Scholar 

  • Sirot D, Sirot J, Labia R, et al. (1987b) Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J Antimicrob Chemother 20: 323–334

    PubMed  CAS  Google Scholar 

  • Sutcliffe JG (1978) Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci USA 75: 3737–3741

    PubMed  CAS  Google Scholar 

  • Sykes RB, Matthew M (1976) The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. J Antimicrob Chemother 2: 115–157

    PubMed  CAS  Google Scholar 

  • Sykes RB, Matthew M (1979) Detection, assay and immunology of beta-lactamases. In: Hamilton-Miller JMT, Smith JT (eds) Beta-lactamases. Academic Press, London, pp 17–49

    Google Scholar 

  • Takahashi I, Tsukamoto K, Harada M, Sawai T (1983) Carbenicillin-hydrolyzing penicillinases of Proteus mirabilis and the PSE-type penicillinases of Pseudomonas aeruginosa. Microbiol Immunol 27: 995–1004

    PubMed  CAS  Google Scholar 

  • Thabaut A, Philippon A, Meyran M (1985) Beta-lactamases of Pseudomonas aeruginosa and susceptibility against beta-lactam antibiotics. Chemioterapia 5: 36–42

    Google Scholar 

  • Thornsberry C, McDougal LK (1982) Ampicillin-resistant Haemophilus influenzae: incidence, mechanism, and detection. Postgrad Med 71: 135–145

    Google Scholar 

  • Tirado M, Roy C, Segura C, Reig R, Hermida M, Foz A (1986) Incidence of strains producing plasmid determined beta-lactamases among carbenicillin resistant Pseudomonas aeruginosa. J Antimicrob Chemother 18: 453–458

    PubMed  CAS  Google Scholar 

  • Ubukata K, Yamashita N, Konno M (1985) Occurrence of a beta-lactam-inducible penicillin-binding protein in methicillin-resistant staphylococci. Antimicrob Agents Chemother 27: 851–857

    PubMed  CAS  Google Scholar 

  • Vecoli C, Prevost FE, Ververis JJ, Medeiros AA, O’Leary GP Jr (1983) A comparison of polyacrylamide and agarose gel thin-layer isoelectric focusing for the characterization of beta-lactamase. Antimicrob Agents Chemother 24: 186–189

    PubMed  CAS  Google Scholar 

  • Wang P-Z, Novick RP (1987) Nucleotide sequence and expression of the beta-lactamase gene from Staphylococcus aureus plasmid pI258 in Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. J Bacteriol 169: 1763–1766

    PubMed  CAS  Google Scholar 

  • Waxman DJ, Amanuma H, Strominger JL (1979) Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial L-alanine carboxypeptidases. Proc Natl Acad Sci USA 76: 2730–2734

    PubMed  Google Scholar 

  • Waxman DJ, Amanuma H, Strominger JL (1982) Amino acid sequence homologies between Escherichia coli penicillin-binding protein 5 and class A beta-lactamases. FEBS Lett 139: 159–163

    PubMed  CAS  Google Scholar 

  • Whitaker S, Hajipieris P, Williams JD (1983) Distribution and type of beta-lactamase amongst 1000 gram-negative rod bacteria. Proc 13th Int Congr Chemother 89: 10–11

    Google Scholar 

  • Williams RJ, Livermore DM, Lindridge MA, Said AA, Williams JD (1984) Mechanisms of beta-lactam resistance in British isolates of Pseudomonas aeruginosa. J Med Microbiol 17: 283–293

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Tanaka M, Nohara C, Fukunaga Y, Yamagishi S (1981) Transposition of the oxacillin-hydrolyzing penicillinase gene. J Bacteriol 145: 808–813

    PubMed  CAS  Google Scholar 

  • Yang YJ, Livermore DM, Jones CS (1985) LXA-1, a new plasmid determined beta-lactamase from enterobacteria. Abstr 2nd Eur Congr Cl in Microbiol

    Google Scholar 

  • Yocum RR, Waxman DJ, Rasmussen JR, Strominger JL (1979) Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial L-alanine carboxypeptidases. Proc Natl Acad Sci USA 76: 2730–2734

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Medeiros, A.A. (1989). Plasmid-Determined Beta-Lactamases. In: Bryan, L.E. (eds) Microbial Resistance to Drugs. Handbook of Experimental Pharmacology, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74095-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74095-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74097-8

  • Online ISBN: 978-3-642-74095-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics