Skip to main content

Resistance to β-Lactam Antibiotics Mediated by Alterations of Penicillin-Binding Proteins

  • Chapter
Microbial Resistance to Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 91))

Abstract

Beta-lactam antibiotics interfere with the biosynthesis of the bacterial cell wall by acting as analogues of the acyl-d-alanyl-d-alanine moiety of the lipid-linked disaccharide-pentapeptide substrate of the enzymes that catalyse the synthesis of crosslinked peptidoglycan (Waxman and Strominger 1983). These enzymes can be detected and studied as penicillin-binding proteins (PBPs) as they are essentially irreversibly acylated by penicillin, and other β-lactam antibiotics, resulting in an inactive penicilloyl-enzyme that is analogous to the acyl-enzyme formed during the processing of their normal peptide substrate (Spratt and Pardee 1975; Spratt 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbour AG (1981) Properties of penicillin-binding proteins in Neisseria gonorrhoeae. Antimicrob Agents Chemother 19: 316–322

    PubMed  CAS  Google Scholar 

  • Beck WD, Berger-Bachi B, Kayser FH (1986) Additional DNA in methicillin-resistant Staphylococcus aureus and molecular cloning of mec-specific DNA. J Bacteriol 165: 373–378

    PubMed  CAS  Google Scholar 

  • Berger-Bachi B (1983) Insertional inactivation of staphylococcal methicillin resistance by Tn551. J Bacteriol 154: 479–487

    PubMed  CAS  Google Scholar 

  • Broome-Smith JK, Edelman A, Yousif S, Spratt BG (1985a) The nucleotide sequences of the ponA and ponB genes encoding penicillin-binding proteins lA and 1B of Escherichia coli. Eur J Biochem 147: 437–446

    Article  PubMed  CAS  Google Scholar 

  • Broome-Smith JK, Hedge PJ, Spratt BG (1985b) Production of thiol-penicillin-binding protein 3 of Escherichia coli using a two primer method of mutagenesis. EMBO J 4: 231–235

    PubMed  CAS  Google Scholar 

  • Brown DFJ, Reynolds PE (1980) Intrinsic resistance to β-lactam antibiotics in Staphylococcus aureus. FEBS Lett 122: 275–278

    Article  PubMed  CAS  Google Scholar 

  • Cannon JG, Sparling PF (1984) The genetics of the gonococcus. Annu Rev Microbiol 38: 111–133

    Article  PubMed  CAS  Google Scholar 

  • Chambers HF, Hartman BJ, Tomasz A (1985) Increased amounts of a novel penicillin-binding protein in a strain of methicillin-resistant Staphylococcus aureus exposed to nafcillin. J Clin Invest 76: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Demerec M (1945) Production of staphylococcus strains resistant to various levels of penicillin. Proc Nacl Acad Sci USA 31: 16–24

    Article  CAS  Google Scholar 

  • Dideberg O, Charlier P, Wery J-P, Dehottay P, Dusart J, Erpicum T, Frere J-M, Ghuysen J-M (1987) The crystal structure of the β-lactamase of Streptomyces albus G at 0.3 nm resolution. Biochem J 245: 911–913

    PubMed  CAS  Google Scholar 

  • Dougherty TJ (1986) Genetic analysis and penicillin-binding protein alterations in Neisseria gonorrhoeae with chromosomally mediated resistance. Antimicrob Agents Chemother 30: 649–652

    PubMed  CAS  Google Scholar 

  • Dougherty TJ, Koller AE, Tomasz A (1980) Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 18: 730–737

    PubMed  CAS  Google Scholar 

  • Dougherty TJ, Koller AE, Tomasz A (1980) Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 18: 730–737

    PubMed  CAS  Google Scholar 

  • Dougherty TJ, Koller AE, Tomasz A (1980) Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 18: 730–737

    PubMed  CAS  Google Scholar 

  • Eliopoulos GM, Wennersten C, Moellering RC (1982) Resistance to beta-lactam antibiotics in Streptococcus faecium. Antimicrob Agents Chemother 22: 295–301

    PubMed  CAS  Google Scholar 

  • Faruki H, Sparling PF (1986) Genetics of resistance in a non- β-lactamase-producing gonococcus with relatively high-level penicillin resistance. Antimicrob Agents Chemother 30: 856–860

    PubMed  CAS  Google Scholar 

  • Faruki H, Kohmescher RN, McKinney WP, Sparling PF (1985) A community-based outbreak of infection with penicillin-resistant Neisseria gonorrhoeae not producing penicillinase (chromosomally mediated resistance). N Engl J Med 313: 607–611

    Article  PubMed  CAS  Google Scholar 

  • Feldman C, Kallenbach JM, Miller SD, Thorburn JR, Koornhof HJ (1985) Community-acquired pneumonia due to penicillin-resistant pneumococci. N Engl J Med 313: 615–617

    Article  PubMed  CAS  Google Scholar 

  • Fontana R, Cerini R, Longini P, Grossato A, Canepari P (1983) Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J Bacteriol 155: 1343–1350

    PubMed  CAS  Google Scholar 

  • Frère J-M, Joris B (1985) Penicillin-sensitive enzymes in peptidoglycan synthesis. CRC Crit Rev Microbiol 4: 299–396

    Google Scholar 

  • Godfrey AJ, Bryan LE, Rabin HR (1981) β-lactam resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrob Agents Chemother 19: 705–711

    Google Scholar 

  • Hakenbeck R, Kohiyama M (1982) Purification of penicillin-binding protein 3 from Streptococcus pneumoniae. Eur J Biochem 127: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Hakenbeck R, Tarpay M, Tomasz A (1980) Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 17: 364–371

    PubMed  CAS  Google Scholar 

  • Hakenbeck R, Ellerbrok H, Briese T, Handwerger S, Tomasz A (1986) Penicillin-binding proteins of penicillin-susceptible and resistant pneumococci immunological relatedness of altered proteins and changes in peptides carrying the β-lactam binding site. Antimicrob Agents Chemother 30: 553–558

    PubMed  CAS  Google Scholar 

  • Hakenbeck R, Tomette S, Adkinson NF (1987) Interaction of non-lytic β-lactams with penicillin-binding proteins in Streptococcus pneumoniae. J Gen Microbiol 133: 755–760

    PubMed  CAS  Google Scholar 

  • Handwerger S, Tomasz A (1986a) Alterations in penicillin-binding proteins of clinical and laboratory isolates of pathogenic Streptococcus pneumoniae with low levels of penicillin resistance. J Infect Dis 153: 83–89

    Article  PubMed  CAS  Google Scholar 

  • Handwerger S, Tomasz A (1986b) Alterations in kinetic properties of penicillin-binding proteins of penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 30: 57–63

    PubMed  CAS  Google Scholar 

  • Hansman D, Bullen MM (1967) A resistant pneumococcus. Lancet 2: 264–265

    Article  Google Scholar 

  • Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158: 513–516

    PubMed  CAS  Google Scholar 

  • Hartman BJ, Tomasz A (1986) Expression of methicillin resistance in heterogeneous strains of Staphylococcus aureus. Antimicrob Agents Chemother 29: 85–92

    PubMed  CAS  Google Scholar 

  • Hayes MV, Curtis NAC, Wyke A, Ward JB (1981) Decreased affinity of a penicillin-binding protein for β-lactam antibiotics in a clinical isolate of Staphylococcus aureus resistant to methicillin. FEMS Microbiol Lett 10: 119–122

    CAS  Google Scholar 

  • Hedge PJ, Spratt BG (1984) A gene fusion that localises the penicillin-binding domain of penicillin-binding protein 3 of Escherichia coli. FEBS Lett 176: 179–184

    Article  PubMed  CAS  Google Scholar 

  • Hedge PJ, Spratt BG (1985a) Amino acid substitutions that reduce the affinity of penicillin-binding protein 3 of Escherichia coli. Eur J Biochem 151: 111–121

    Article  PubMed  CAS  Google Scholar 

  • Hedge PJ, Spratt BG (1985b) Resistance to β-lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein. Nature 318: 478–480

    Article  PubMed  CAS  Google Scholar 

  • Herzberg O, Moult J (1987) Bacterial resistance to β-lactam antibiotics: crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.5A resolution. Science 236: 694–701

    Google Scholar 

  • Jacobs MR, Koornhof HJ, Robins-Browne RM, Stevenson CM, Vermaak ZA, Freiman M, Killer GB, et al. (1978) Emergence of multiply resistant pneumococci. N Engl J Med 299: 735–740

    Article  PubMed  CAS  Google Scholar 

  • Keck W, Glauner B, Schwarz U, Broome-Smith JK, Spratt BG (1985) Sequences of the active-site peptides of three of the high-MW penicillin-binding proteins of Escherichia coli K12. Proc Natl Acad Sci USA 82: 1999–2003

    Article  PubMed  CAS  Google Scholar 

  • Kelly JA, Dideberg O, Charlier P, Wery JP, Libert M, Moews PC, Knox JR, et al. (1986) on the origin of bacterial resistance to penicillin: comparison of a β-lactamase and a penicillin target. Science 231: 1429–1431

    Google Scholar 

  • Kornblum J, Hartman BJ, Novick RP, Tomasz A (1986) Conversion of a homogeneously methicillin-resistant strain of Staphylococcus aureus to heterogeneous resistance by Tn551-mediated insertional inactivation. Eur J Clin Microbiol 5: 714–718

    Article  PubMed  CAS  Google Scholar 

  • Laible G, Hakenbeck R (1987) Penicillin-binding proteins in β-lactam-resistant laboratory mutants of Streptococcus pneumoniae. Mol Microbiol 1: 355–363

    Article  PubMed  CAS  Google Scholar 

  • Malouin F, Bryan LE (1986) Modification of penicillin-binding proteins as mechanisms of β-lactam resistance. Antimicrob Agents Chemother 30: 1–5

    PubMed  CAS  Google Scholar 

  • Malouin F, Schryvers AB, Bryan LE (1987) Cloning and expression of genes reponsible for altered penicillin-binding proteins 3a and 3b in Haemophilus influenzae. Antimicrob Agents Chemother 31: 286–291

    PubMed  CAS  Google Scholar 

  • Matthews PR, Reed KC, Stewart PR (1987) The cloning of chromosomal DNA associated with methicillin and other resistances in Staphylococcus aureus. J Gen Microbiol 133: 1919–1929

    PubMed  CAS  Google Scholar 

  • Matsuhashi M, Song MD, Ishino F, Wachi M, Doi M, Inoue M, Ubukata K, et al. (1986) Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to β-lactam antibiotics in Staphylococcus aureus. J Bacteriol 167: 975–980

    PubMed  CAS  Google Scholar 

  • Mendelman PM, Chaffin DO, Stull TL, Rubens CE, Mack KD, Smith AL (1984) Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob Agents Chemother 26: 235–244

    PubMed  CAS  Google Scholar 

  • Mendelman PM, Campos J, Chaffin DO, Serfass DA, Smith AL, Saez-Nieto JA (1988) Relative penicillin G resistance in Neisseria meningitidis and reduced affinity of penicillin-binding protein. Antimicrob Agents Chemother 32: 706–709

    PubMed  CAS  Google Scholar 

  • Nakagawa J, Tamaki S, Tomioka S, Matsuhashi M (1984) Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. J Biol Chem 259: 13937–13946

    PubMed  CAS  Google Scholar 

  • Olsson O, Bergstrom S, Lindberg FP, Normark S (1983) ampC β-lactamase hyperproduction in Escherichia coli: natural ampicillin resistance generated by horizontal chromosomal DNA transfer from Shigella. Proc Natl Acad Sci USA 80: 7556–7560

    Google Scholar 

  • Parr TR, Bryan LE (1984) Mechanism of resistance of an ampicillin-resistant, beta-lactamase-negative clinical isolate of Haemophilus influenzae type b to beta-lactam antibiotics. Antimicrob Agents Chemother 25: 747–753

    PubMed  CAS  Google Scholar 

  • Percheson PB, Bryan LE (1980) Penicillin-binding components of penicillin-susceptible and -resistant strains of Streptococcus pneumoniae. Antimicrob Agents Chemother 12: 390–396

    Google Scholar 

  • Philpot-Howard J (1984) Antibiotic resistance and Haemophilus influenzae. J Antimicrob Chemother 13: 199–208

    Article  Google Scholar 

  • Reynolds PE (1985) Inhibitors of bacterial cell wall synthesis. Symp Soc Gen Microbiol 38: 13–40

    CAS  Google Scholar 

  • Reynolds PE, Fuller C (1986) Methicillin-resistant strains of Staphylococcus aureus: presence of identical additional penicillin-binding protein in all strains examined. FEMS Microbiol Lett 33: 251–254

    Article  CAS  Google Scholar 

  • Rossi L, Tonin E, Cheng YR, Fontana R (1985) Regulation of penicillin-binding protein activity: description of a methicillin-inducible penicillin-binding protein in Staphylococcus aureus. Antimicrob Agents Chemother 27: 828–831

    PubMed  CAS  Google Scholar 

  • Saez-Nieto JA, Fontanals D,, de Jalon G, de Artola VM, Pena P, Morera MA, Verdaguer R et al. (1987) Isolation of Neisseria meningitidis strains with increase of penicillin minimal inhibitory concentrations. Epidemiol Infect 99: 463–469

    Google Scholar 

  • Samraoui B, Sutton BJ, Todd RJ, Artymiuk PJ, Waley SG, Phillips DC (1986) Tertiary structure similarity between a class A β-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. Nature 320: 378–380

    Article  PubMed  CAS  Google Scholar 

  • Serfass DA, Mendelman PM, Chaffin DO, Needham CA (1986) Ampicillin resistance and penicillin-binding proteins of Haemophilus influenzae. J Gen Microbiol 132: 2855–2861

    PubMed  CAS  Google Scholar 

  • Shockley TE, Hotchkiss RD (1970) Stepwise introduction of transformable penicillin resistance in pneumococcus. Genetics 64: 397–408

    PubMed  CAS  Google Scholar 

  • Song MD, Maesaki S, Wachi M, Takahashi T, Doi M, Ishino F, Maeda Y, et al. (1987) Primary structure and origin of the gene of the β-lactam-inducible penicillin-binding protein that is responsible for methicillin resistance in strains of Staphylococcus aureus. FEMS Microbiol Lett 221: 167–171

    CAS  Google Scholar 

  • Spratt BG (1975) Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli. Proc Natl Acad Sci USA 72: 2999–3003

    Article  PubMed  CAS  Google Scholar 

  • Spratt BG (1977) Properties of the penicillin-binding proteins of Escherichia coli. Eur J Biochem 72: 341–352

    Article  PubMed  CAS  Google Scholar 

  • Spratt BG (1978) Escherichia coli resistance to β-lactam antibiotics through a decrease in the affinity of a target for lethality. Nature 274:713–715

    Google Scholar 

  • Spratt BG (1983) Penicillin-binding proteins and the future of β-lactam antibiotics. J Gen Microbiol 129: 1247–1260

    PubMed  CAS  Google Scholar 

  • Spratt BG (1988) Hybrid penicillin-binding proteins in penicillin-resistant isolates of Neisseria gonorrhoeae. Nature 332: 173–176

    Article  PubMed  CAS  Google Scholar 

  • Spratt BG, Cromie KD (1988) Penicillin-binding proteins of gram-negative bacteria. Rev Infect Dis 10: 699–711

    Article  PubMed  CAS  Google Scholar 

  • Spratt BG, Pardee AB (1975) Penicillin-binding proteins and cell shape in E. coli. Nature 254: 516–517

    Article  PubMed  CAS  Google Scholar 

  • Stewart GC, Rosenblum ED (1980) Genetic behaviour of the methicillin resistance determinant in Staphylococcus aureus. J Bacteriol 144: 1200–1202

    PubMed  CAS  Google Scholar 

  • Tonin E, Tomasz A (1986) β-lactam-specific resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother 30: 577–583

    Google Scholar 

  • Ubukata K, Yamashita N, Konno M (1985) Occurrence of a β-lactam-inducible penicillin-binding protein in methicillin-resistant staphylococci. Antimicrob Agents Chemother 27: 851–857

    PubMed  CAS  Google Scholar 

  • Utsui Y, Yokota T (1985) Role of an altered penicillin-binding protein in methicillin-and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 28: 397–403

    PubMed  CAS  Google Scholar 

  • Waxman DJ, Strominger JL (1983) Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu Rev Biochem 52: 825–869

    Article  PubMed  CAS  Google Scholar 

  • Williamson R, Tomasz A (1985) Inhibition of cell wall synthesis and acylation of the penicillin-binding proteins during prolonged exposure of growing Staphylococcus pneumoniae to benzylpenicillin. Eur J Biochem 151: 475–483

    Article  PubMed  CAS  Google Scholar 

  • Williamson R, Hakenbeck R, Tomasz A (1980) In vivo interaction of β-lactam antibiotics with the penicillin-binding proteins of Streptococcus pneumoniae. Antimicrob Agents Chemother 18: 629–637

    PubMed  CAS  Google Scholar 

  • Williamson R, Le Bouguenec C, Gutman L, Horaud T (1985) One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin. J Gen Microbiol 131: 1933–1940

    PubMed  CAS  Google Scholar 

  • Yousif SY, Broome-Smith JK, Spratt BG (1985) Lysis of Escherichia coli by β-lactam antibiotics: deletion analysis of the role of penicillin-binding proteins 1A and 1B. J Gen Microbiol 131: 2839–2845

    PubMed  CAS  Google Scholar 

  • Zighelboim S, Tomasz A (1980) Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob Agents Chemother 17: 434–442

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spratt, B.G. (1989). Resistance to β-Lactam Antibiotics Mediated by Alterations of Penicillin-Binding Proteins. In: Bryan, L.E. (eds) Microbial Resistance to Drugs. Handbook of Experimental Pharmacology, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74095-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74095-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74097-8

  • Online ISBN: 978-3-642-74095-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics