Skip to main content

Microbial Persistence or Phenotypic Adaptation to Antimicrobial Agents: Cystic Fibrosis as an Illustrative Case

  • Chapter
Book cover Microbial Resistance to Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 91))

Abstract

This chapter considers adaptive changes which allow microorganisms to persist despite apparently effective antimicrobial therapy by in vitro testing. Such changes are normally manifest mainly during the course of therapy but in some instances may be stable beyond its termination. Even in the latter circumstances when bacterial colonization continues, isolates expressing lower susceptibility are often replaced by more susceptible organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaudry PH, Marks MI, McDougall D (1980) Is anti-Pseudomonastherapy warranted in acute respiratory exacerbations in children with cystic fibrosis. Acta Pediatr 97: 144–147

    CAS  Google Scholar 

  • Blessing J, Walker J, Mayberry B (1979) Pseudomonas cepacia and multiphilia in the cystic fibrosis patient (abstr). Am Rev Respir Dis 119:262

    Google Scholar 

  • Blumer JL, Stem RC, Myers CM, Klinger JD, Reed MD (1985) Pharmacokinetics and pharmacodynamics of ciprofloxacin in cystic fibrosis (Abstr 5–40–14). Proceedings of the 14th International Congress of Chemotherapy, Kyoto, p 178

    Google Scholar 

  • Bryan LE (1984) Mechanisms of action of aminoglycoside antibiotics. In: Root RK, Sande MA (eds) New dimensions in antimicrobial therapy. Churchill Livingston, New York, pp 17–36

    Google Scholar 

  • Bush K, Sykes RB (1984) Interaction of beta-lactam antibiotics with beta-lactamases as a cause for resistance. In: Bryan LE (ed) Antimicrobial drug resistance. Academic, Orlando, pp 1–32

    Google Scholar 

  • Cozens RM, Tuomanen E, Tosch W, Zak O, Suter J, Tomasz A (1986) Evaluation of the bactericidal activity of beta-lactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrob Agents Chemother 29: 797–802

    PubMed  CAS  Google Scholar 

  • Fisher J (1984) Beta-lactams resistant to hydrolysis by the beta-lactamase. In: Bryan LE (ed) Antimicrobial drug resistance. Academic, Orlando, pp 33–80

    Google Scholar 

  • Gilligan PH, Gage PA, Welch DF, Muszynski MJ, Wait KR (1987) Prevelance of thymidine-dependent Staphylococcus aureusin patients with cystic fibrosis. J Clin Microbiol 25: 1258–1261

    PubMed  CAS  Google Scholar 

  • Godfrey AJ, Bryan LE (1984) Resistance of Pseudomonas aeruginosato new beta-lactamase–resistant beta-lactams. Antimicrob Agents Chemother 26: 485–488

    PubMed  CAS  Google Scholar 

  • Gold R, Overmeyer A, Knie B, Fleming AC, Levinson H (1985) Controlled trial of cetazidime versus ticarcillin and tobramycin in the treatment of acute respiratory exacerbations in patients with cystic fibrosis. Pediatr Infect Dis 4: 172–177

    Article  PubMed  CAS  Google Scholar 

  • Govan JRW, Fyfe JAM (1978) Mucoid Pseudomonas aeruginosaand cystic fibrosis: resistance of a mucoid form to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. J Antimicrob Chemother 4: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Hobby GL, Meyer K, Chaffee E (1942) Observation on the mechanism of penicillin. Proc Soc Exp Biol Med 50: 281–585

    CAS  Google Scholar 

  • Hoiby N (1982) Microbiology of lung infections in cystic fibrosis patients. Acta Paediatr Scand [Suppl] 301: 33–54

    Article  Google Scholar 

  • Hoiby N, Schiotz PO (1982) Immune complex mediated tissue damage in the lungs of cystic fibrosis with Pseudomonas aeruginosainfections. Acta Paediatr Scand [Suppl] 301: 6373

    Google Scholar 

  • Howden R (1981) A new medium for isolation of Staphylococcus aureusincluding thymine requiring strains from sputum. Med Lab Sci 38: 29–33

    PubMed  CAS  Google Scholar 

  • LeBel M, Bergeron MG, Balle F, Fiset C, Chasse G, Bigonesse P, Rivard G (1986) Pharmacokinetics and pharmacodynamics of ciprofloxacin in cystic fibrosis patients. Antimicrob Agents Chemother 30: 260–266

    PubMed  CAS  Google Scholar 

  • Leeder JS, Spino M, Isles AF, Tesoro AM, Gold R, MacLeod SM (1984) Ceftazidime disposition in acute and stable cystic fibrosis. Clin Pharmacol Ther 36: 355–362

    Article  PubMed  CAS  Google Scholar 

  • Levy J (1986) Antibiotic activity in sputum. J Pediatr 108: 841–846

    Article  PubMed  CAS  Google Scholar 

  • Levy J, Smith AL, Koup JR, Williams-Warren J, Ramsey B (1984) Disposition of tobramycin in patients with cystic fibrosis: a perspective controlled study. J Pediatr 105: 117–124

    Article  PubMed  CAS  Google Scholar 

  • Mathews LW, Drotar D (1984) Cystic fibrosis–a challenging long-term chronic disease. Pediatr Clin North Am 31: 133–152

    Google Scholar 

  • McLaughlin FJ, Matthews WJ, Strieder DJ (1983) Clinical and bacteriological reponses to three antibiotic regimens for acute exacerbations of cystic fibrosis: ticarcillin-tobramycin, azlocillin-tobramycin and azlocillo-placebo. J Infect Dis 147: 559–567

    Article  PubMed  CAS  Google Scholar 

  • Prince A (1986) Antibiotic resistance of Pseudomonasspecies. J Pediatr 108: 830–834

    Article  PubMed  CAS  Google Scholar 

  • Rabin HR, Harley FL, Bryan LE, Elfring G (1980) Evaluation of a high dose tobramycin and ticarcillin treatment protocol in cystic fibrosis based on improved susceptibility criteria and antibiotic pharmacokinetics. In: Sturgess J (ed) Perspectives in cystic fibrosis. Canadian Cystic Fibrosis Foundation, Toronto, pp 370–375

    Google Scholar 

  • Reed MD, Stem RC, O’Brien CA, Crenshaw DA, Blumer JL (1987) Randomized double-blind evaluation of ceftazidime dose ranging in hospitalized patients with cystic fibrosis. Antimicrob Agents Chemother 31: 698–702

    PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders WE (1983) Emergence of resistance during therapy with the newer beta-lactam antibiotics: role of inducible beta-lactamases and implications for the future. Rev Infect Dis 5: 639–648

    Article  PubMed  CAS  Google Scholar 

  • Schryvers AB, Ogunarriwo J, Godfrey AJ, Chamberland S, Rabin HR, Bryan LE (1987) Mechanism of persistence of Pseudomonas aeruginosaduring treatment of lung infection in cystic fibrosis patients with third generation cephalosporins. Antimicrob Agents Chemother 31: 1438–1439

    PubMed  CAS  Google Scholar 

  • Shalit I, Stutman HR, Marks MI, Chartrand SA, Hilman BC (1987) Randomized study of two dosage regimens of ciprofloxacin for treating chronic bronchopulmonary infection in patients with cystic fibrosis. Am J Med [Suppl 4 a] 82: 189–195

    CAS  Google Scholar 

  • Slack MPE, Nichols WS (1982) Antibiotic penetrations through bacterial capsules and exopolysaccharides. J Antimicrob Chemother 10: 368–372

    Article  PubMed  CAS  Google Scholar 

  • Sparham PD, Lobban DI, Speller CE (1978) Isolation of Staphylococcus aureusfrom sputum in cystic fibrosis. J Clin Pathol 31: 913–918

    Article  PubMed  CAS  Google Scholar 

  • Spino M, Chai RP, Isles AF (1984) Cloxacillin absorption and disposition in cystic fibrosis. J Pediatr 105: 829–835

    Article  PubMed  CAS  Google Scholar 

  • Stephens D, Garey N, Isles AF (1983) Efficacy of inhaled tobramycin in the treatment of pulmonary exacerbations in children with cystic fibrosis. Pediatr Infect Dis 2: 209–211

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum CS, Hastie AT, Higgins ML, Kuppers F, Weinbaum G (1984) Inability of purified Pseudomonas aeruginosaexopolysaccharide to bind selected antibiotics. Antimicrob Agents Chemother 25: 673–675

    PubMed  CAS  Google Scholar 

  • Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coliby beta-lactam antibiotics strictly proportional to the rate of bacterial growth. J Gen Microbiol 132: 1297–1304

    PubMed  CAS  Google Scholar 

  • Vasil ML (1986) Pseudomonas aeruginosa: biology, mechanisms of virulence, epidemiology. J Pediatr 108:800–805

    Google Scholar 

  • Vu H, Nikaido H (1985) Role of beta-lactam hydrolysis in the mechanism of resistance of a beta-lactamase constitutive Enterobacter cloacaestrain to extended spectrum betalactams. Antimicrob Agents Chemother 27: 393–398

    PubMed  CAS  Google Scholar 

  • Wang EL, Prober CG, Manson B, Corey M, Levison H (1984) Association of respiratory viral infections with pulmonary deterioration in patients with cystic fibrosis. N Engl J Med 311: 1653–1658

    Article  PubMed  CAS  Google Scholar 

  • Wood RE, Wanner A, Hirsch J (1985) Tracheal-mucociliary transport in patients with cystic fibrosis and its stimulation by terbutaline. Am Rev Respir Dis 111: 733–739

    Google Scholar 

  • Woods DE, Sokol PA (1985) The use of transposon mutants to assess the role of exo-enzyme S in the chronic pulmonary disease due to Pseudomonas aeruginosa. Eur J Clin Microbiol 4: 163–169

    Article  PubMed  CAS  Google Scholar 

  • Wright PF, Khawk T, Oxman MN, Shwachman H (1976) Evaluation of the safety of amantidine. HCL and the role of respiratory viral infection in children with cystic fibrosis. J Infect Dis 134: 144–149

    Article  PubMed  CAS  Google Scholar 

  • Yaffe SJ, Gerbracht LM, Mosovich LL, Mattar ME, Danish M, Jusko WJ (1977) Pharma cokinetics of methicillin in patients with cystic fibrosis. J Infect Dis 135: 828–831

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bryan, L.E. (1989). Microbial Persistence or Phenotypic Adaptation to Antimicrobial Agents: Cystic Fibrosis as an Illustrative Case. In: Bryan, L.E. (eds) Microbial Resistance to Drugs. Handbook of Experimental Pharmacology, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74095-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74095-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74097-8

  • Online ISBN: 978-3-642-74095-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics