Skip to main content

Methylation of RNA and Resistance to Antibiotics

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 91))

Abstract

Microorganisms have evolved or acquired various modes of resistance to antibiotics, as discussed in depth in this volume. In some cases, active drug molecules may be physically prevented from encountering the target site(s) at which they normally act, either by direct exclusion at membrane barriers or by chemical inactivation due to extracellular enzymes (e.g. β-lactamases). In other instances, where total exclusion of the drug from the cytoplasm cannot be achieved, resistance may depend upon the operation of antibiotic efflux mechanisms (e.g. for tetracycline) or upon drug inactivation by intracellular enzymes and cofactors (e.g. for aminoglycosides). Thus, in some organisms, a critical balance may be struck between drug accumulation on the one hand and its removal or inactivation on the other, so that inhibitory drug concentrations are not established intracellularly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen NE (1977) Macrolide resistance in Staphylococcus aureus: inducers of macrolide resistance. Antimicrob Agents Chemother 11: 669–674

    PubMed  CAS  Google Scholar 

  • Beauclerk AAD, Cundliffe E (1987) Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol 193: 661–671

    Article  PubMed  CAS  Google Scholar 

  • Beauclerk AAD, Hummel H, Holmes DJ, Böck A, Cundliffe E (1985) Studies of the GTPase domain of archaebacterial ribosomes. Eur J Biochem 151: 245–255

    Article  PubMed  CAS  Google Scholar 

  • Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70: 2276–2280

    Article  PubMed  CAS  Google Scholar 

  • Bibb MJ, Bibb MJ, Ward JM, Cohen SN (1985) Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces. Mol Gen Genet 199: 26–36

    Article  PubMed  CAS  Google Scholar 

  • Chabbert Y (1956) Antagonisme in vitro entre l’erythromycine et la spiramycine. Ann Inst Pasteur 90: 787–790

    CAS  Google Scholar 

  • Crameri R, Davies JE (1986) Increased production of aminoglycosides associated with amplified antibiotic resistance genes. J Antibiot (Tokyo) 39: 128–135

    CAS  Google Scholar 

  • Cundliffe E (1978) Mechanism of resistance to thiostrepton in the producing-organism, Streptomyces azureus. Nature 272: 792–795

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe E (1979) Thiostrepton and related antibiotics. In: Hahn FE (ed) Antibiotics V/I. Mechanism of action of antibacterial agents. Springer, Berlin Heidelberg New York, pp 329–343

    Google Scholar 

  • Cundliffe E (1980) Antibiotics and prokaryotic ribosomes: action, interaction and resistance. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 555–581

    Google Scholar 

  • Cundliffe E (1984) Self defence in antibiotic-producing organisms. Br Med Bull 40: 61–67

    PubMed  CAS  Google Scholar 

  • Cundliffe E (1986) Involvement of specific portions of ribosomal RNA in defined ribosomal functions: a study utilising antibiotics. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York Tokyo, pp 586–604

    Chapter  Google Scholar 

  • Cundliffe E, Thompson J (1979) Ribose methylation and resistance to thiostrepton. Nature 278: 859–861

    Article  PubMed  CAS  Google Scholar 

  • Davies J (1980) Enzymes modifying aminocyclitol antibiotics and their roles in resistance determination and biosynthesis. In: Rinehart KL Jr, Suami T (eds) Aminocyclitol antibiotics. American Chemical Society, Washington DC, pp 323–334

    Chapter  Google Scholar 

  • Denoya CD, Bechhofer DH, Dubnau D (1986) Translational autoregulation of ermC 23S rRNA methyltransferase expression in Bacillus subtilis. J Bacteriol 168: 1133–1141

    PubMed  CAS  Google Scholar 

  • Dubnau D (1984) Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. CRC Crit Rev Biochem 16: 103–132

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa Y, Weisblum B (1981) A family of r-determinants in Streptomyces spp that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol 146: 621–631

    PubMed  CAS  Google Scholar 

  • Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1981) The molecular basis of antibiotic action. Wiley, London

    Google Scholar 

  • Garrod LP (1957) The erythromycin group of antibiotics. Br Med J 2: 57–63

    Article  PubMed  CAS  Google Scholar 

  • Graham MY, Weisblum B (1979) 23S ribosomal ribonucleic acid of macrolide-producing streptomycetes contains methylated adenine. J Bacteriol 137:1464–1467

    PubMed  CAS  Google Scholar 

  • Gryczan TJ, Grandi G, Hahn J, Grandi R, Dubnau D (1980) Conformational alteration of mRNA structure and the post-transcriptional regulation of erythromycin-induced drug resistance. Nucleic Acids Res 8: 6081–6097

    Article  PubMed  CAS  Google Scholar 

  • Gryczan T, Israeli-Reches M, Del Bue M, Dubnau D (1984) DNA sequence and regulation of ermD, a macrolide-lincosamide-streptogramin B resistance element from Bacillus licheniformis. Mol Gen Genet 194: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Hahn J, Grandi G, Gryczan TJ, Dubnau D (1982) Translational attenuation of ermC: a deletion analysis. Mol Gen Genet 186: 204–216

    Article  PubMed  CAS  Google Scholar 

  • Highland JH, Howard GA, Ochsner E, Stöffler G, Hasenbank R, Gordon J (1975) Identification of a ribosomal protein necessary for thiostrepton binding to E. coli ribosomes. J Biol Chem 250: 1141–1145

    PubMed  CAS  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Janssen GR, Malpartida F, Smith CP (1986) Regulation of gene expression in antibiotic-producing Streptomyces. Symp Soc Gen Microbiol 39: 251–276

    Google Scholar 

  • Horinouchi S, Weisblum B (1980) Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc Natl Acad Sci USA 77: 7079–7083

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi S, Weisblum B (1981) The control region for erythromycin resistance: free energy changes related to induction and mutation to constitutive expression. Mol Gen Genet 182: 341–348

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi S, Byeon WH, Weisblum B (1983) A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis. J Bacteriol 154: 1252–1262

    PubMed  CAS  Google Scholar 

  • Hotta K, Yamamoto H, Okami Y, Umezawa H (1981) Resistance mechanisms of kanamycin-, neomycin-, and streptomycin-producing streptomycetes to aminoglycoside antibiotics. J Antibiot (Tokyo) 34: 1175–1182

    CAS  Google Scholar 

  • Jones WF Jr, Nichols RL, Finland M (1956) Development of resistance and cross resistance in vivo to erythromycin, carbomycin, oleandomycin, and streptogramin. Proc Soc Exp Biol Med 93: 388–393

    PubMed  CAS  Google Scholar 

  • Kamimiya S, Weisblum B (1987) Inducible macrolide-lincosamide-streptogramin resistance in Streptomyces: cloning and characterization of inducible erm from Streptomyces viridochromogenes and Streptomyces fradiae. In: Alacevie M, Hranueli D, Toman Z (eds) Genetics of industrial microorganisms - 86: part B. Pliva, Zagreb, pp 169–175

    Google Scholar 

  • Kono M, Hashimoto H, Matsuhashi S (1966) Drug resistance of staphylococci. III. Resistance to some macrolide antibiotics and inducible system. Jpn J Microbiol 10: 59–66

    PubMed  CAS  Google Scholar 

  • Lai CJ (1972) Erythromycin-inducible resistance in Staphylococcus aureus. PhD thesis, University of Wisconsin

    Google Scholar 

  • Lai CJ, Weisblum B (1971) Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc Natl Acad Sci USA 68: 856–860

    Article  PubMed  CAS  Google Scholar 

  • Lai CJ, Dahlberg JE, Weisblum B (1973a) Structure of an inducibly methylatable nucleotide sequence in 23S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus. Biochemistry 12: 457–460

    Article  PubMed  CAS  Google Scholar 

  • Lai CJ, Weisblum B, Fahnestock SR, Nomura M (1973b) Alteration of 23S ribosomal ribonucleic acid and erythromycin-induced resistance to lincomycin and spiramycin in Staphylococcus aureus. J Mol Biol 74: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Matkovie B, Piendl W, Böck A (1984) Ribosomal resistance as a widespread self-defence mechanism in aminoglycoside-producing Micromonospora species. FEMS Microbiol Lett 24: 273–276

    Article  Google Scholar 

  • Matsuhashi Y, Murakami T, Nojiri C, Toyama H, Anzai H, Nagaoka K (1985) Mechanisms of aminoglycoside-resistance of Streptomyces harbouring resistant genes obtained from antibiotic-producers. J Antibiot (Tokyo) 38: 279–282

    CAS  Google Scholar 

  • Murakami T, Nojiri C, Toyama H, Hayashi E, Katumata K, Anzai H, Matsuhashi Y, Yamada Y, Nagaoka K (1983) Cloning of antibiotic-resistance genes in Streptomyces. J Antibiot (Tokyo) 36: 1305–1311

    CAS  Google Scholar 

  • Murphy E (1985) Nucleotide sequence of ermA, a macrolide-lincosamide-streptogramin B determinant in Staphylococcus aureus. J Bacteriol 162: 633–640

    PubMed  CAS  Google Scholar 

  • Nakajima Y, Inoue M, Oka Y, Yamagishi S (1968) A mode of resistance to macrolide antibiotics in Staphylococcus aureus. Jpn J Microbiol 12: 248–250

    PubMed  CAS  Google Scholar 

  • Nakano MM, Ogawara H (1987) Isolation and characterization of ribosome resistance gene from Streptomyces kanamyceticus. In: Alacevié M, Hranueli D, Toman Z (eds) Genetics of industrial microorganisms–86. Pliva, Zagreb, pp 177–184

    Google Scholar 

  • Nakano MM, Mashiko H, Ogawara H (1984) Cloning of the kanamycin resistance gene from a kanamycin-producing Streptomyces species. J Bacteriol 157: 79–83

    PubMed  CAS  Google Scholar 

  • Noller HF (1984) Structure of ribosomal RNA. Annu Rev Biochem 53: 119–162

    Article  PubMed  CAS  Google Scholar 

  • Pestka S, Vince R, LeMahieu R, Weiss F, Fern L, Unowsky J (1976) Induction of erythromycin resistance in Staphylococcus aureus by erythromycin derivatives. Antimicrob Agents Chemother 9: 128–130

    PubMed  CAS  Google Scholar 

  • Piendl W, Böck A (1982) Ribosomal resistance in the gentamicin producer organism Micromonospora purpurea. Antimicrob Agents Chemother 22: 231–236

    PubMed  CAS  Google Scholar 

  • Piendl W, Böck A, Cundliffe E (1984) Involvement of 16S ribosomal RNA in resistance of the aminoglycoside-producers Streptomyces tenjimariensis, Streptomyces tenebrarius and Micromonospora purpurea. Mol Gen Genet 197: 24–29

    Article  PubMed  CAS  Google Scholar 

  • Ranzini AC, Dubin DT (1983) The “erythromycin-resistance” methylated sequence of Staphylococcus aureus ribosomal RNA. Plasmid 10: 293–295

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen JL, Odelson DA, Macrina FL (1986) Complete nucleotide sequence and transcription of ermF, a macrolide-lincosamide-streptogramin B resistance determinant from Bacteroides fragilis. J Bacteriol 168: 523–533

    PubMed  CAS  Google Scholar 

  • Roberts AN, Hudson GS, Brenner S (1985) An erythromycin-resistance gene from an erythromycin-producing strain of Arthrobacter sp. Gene 35: 259–270

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Hashimoto H, Mitsuhashi S (1970) Macrolide resistance in Staphylococcus aureus. Isolation of a mutant in which leucomycin is an active inducer. Jpn J Microbiol 14: 473–478

    PubMed  CAS  Google Scholar 

  • Schmidt FJ, Thompson J, Lee K, Dijk J, Cundliffe E (1981) The binding site for ribosomal protein L11 within 23S ribosomal RNA of Escherichia coli. J Biol Chem 256: 12301–12305

    PubMed  CAS  Google Scholar 

  • Shivakumar AG, Dubnau D (1981) Characterization of a plasmid-encoded ribosome methylase associated with macrolide resistance. Nucleic Acids Res 9: 2549–2562

    Article  PubMed  CAS  Google Scholar 

  • Shivakumar AG, Hahn J, Dubnau D (1979) Studies on the synthesis of plasmid-coded proteins and their control in Bacillus subtilis minicells. Plasmid 2: 279–289

    Article  PubMed  CAS  Google Scholar 

  • Shivakumar AG, Hahn J, Grandi G, Kozlov Y, Dubnau D (1980) Posttranscriptional regulation of an erythromycin resistance protein specified by plasmid pE 194. Proc Natl Acad Sci USA 77: 3903–3907

    Article  PubMed  CAS  Google Scholar 

  • Skeggs PA, Thompson J, Cundliffe E (1985) Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol Gen Genet 200: 415–421

    Article  PubMed  CAS  Google Scholar 

  • Skeggs PA, Holmes DJ, Cundliffe E (1987) Cloning of aminoglycoside-resistance determinants from Streptomyces tenebrarius and comparison with related genes from other actinomycetes. J Gen Microbiol 133: 915–923

    PubMed  CAS  Google Scholar 

  • Skinner RH, Cundliffe E (1982) Dimethylation of adenine and the resistance of Streptomyces erythraeus to erythromycin. J Gen Microbiol 128: 2411–2416

    CAS  Google Scholar 

  • Skinner R, Cundliffe E, Schmidt FJ (1983) Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem 258: 12702–12706

    PubMed  CAS  Google Scholar 

  • Sugiyama M, Nimi O, Nomi R (1980) Susceptibility of protein synthesis to neomycin in neomycin-producing Streptomyces fradiae. J Gen Microbiol 121: 477–478

    PubMed  CAS  Google Scholar 

  • Tanaka T, Weisblum B (1974) Mutant of Staphylococcus aureus with lincomycin — and carbomycin — inducible resistance to erythromycin. Antimicrob Agents Chemother 5: 538–540

    PubMed  CAS  Google Scholar 

  • Teraoka H, Tanaka K (1974) Properties of ribosomes from Streptomyces erythreus and Streptomyces griseus. J Bacteriol 120: 316–321

    PubMed  CAS  Google Scholar 

  • Thakker-Varia S, Ranzini AC, Dubin DT (1985) Ribosomal RNA methylation in Staphylococcus aureus and Escherichia coli: effect of the “MLS” (erythromycin resistance) methylase. Plasmid 14: 152–161

    Article  PubMed  CAS  Google Scholar 

  • Thompson CJ, Ward JM, Hopwood DA (1980) DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature 286: 525–527

    Article  PubMed  CAS  Google Scholar 

  • Thompson CJ, Skinner RH, Thompson J, Ward JM, Hopwood DA, Cundliffe E (1982) Biochemical characterization of resistance determinants cloned from antibiotic-producing streptomycetes. J Bacteriol 151: 678–685

    PubMed  CAS  Google Scholar 

  • Thompson J, Cundliffe E (1981) Purification and properties of an RNA methylase produced by Streptomyces azureus and involved in resistance to thiostrepton. J Gen Microbiol 124: 291–297

    CAS  Google Scholar 

  • Thompson J, Cundliffe E, Stark M (1979) Binding of thiostrepton to a complex of 23S rRNA with ribosomal protein L11. Eur J Biochem 98: 261–265

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Schmidt F, Cundliffe E (1982) Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J Biol Chem 257: 7915–7917

    PubMed  CAS  Google Scholar 

  • Thompson J, Rae S, Cundliffe E (1984) Coupled transcription-translation in extracts of Streptomyces lividans. Mol Gen Genet 195: 39–43

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Skeggs PA, Cundliffe E (1985) Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. Mol Gen Genet 201: 168–173

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Cundliffe E, Dahlberg AE (1988) Site-directed mutagenesis of Escherichia coli 23S ribosomal RNA at position 1067 within the GTP hydrolysis centre. J Mol Biol 203: 457–465

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama H, Weisblum B (1985) N-methyl transferase of Streptomyces erythraeus that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics-amino acid sequence and its homology to cognate R-factor enzymes from pathogenic bacilli and cocci. Gene 38: 103–110

    Article  PubMed  CAS  Google Scholar 

  • Weaver JR, Pattee PA (1964) Inducible resistance to erythromycin in Staphylococcus aureus. J Bacteriol 88: 574–580

    PubMed  CAS  Google Scholar 

  • Weisblum B (1975) Altered methylation of ribosomal ribonucleic acid in erythromycin-resistant Staphylococcus aureus. In: Schlessinger D (ed) Microbiology -1974. American Society for Microbiology, Washington DC, pp 199–206

    Google Scholar 

  • Weisblum B (1985) Inducible resistance to macrolides, lincosamides and streptogramin type B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression — A review. J Antimicrob Chemother [Suppl A] 16: 63–90

    CAS  Google Scholar 

  • Yamamoto H, Hotta K, Okami Y, Umezawa H (1981) Ribosomal resistance of an istamycin producer, Streptomyces tenjimariensis, to aminoglycoside antibiotics. Biochem Biophys Res Commun 100: 1396–1401

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Hotta K, Okami Y, Umezawa H (1982) Mechanism of resistance to amino-glycoside antibiotics in nebramycin-producing Streptomyces tenebrarius. J Antibiot [Tokyo] 35: 1020–1025

    CAS  Google Scholar 

  • Yanofsky C (1981) Attenuation in the control of expression of bacterial operons. Nature 289: 751–758

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cundliffe, E. (1989). Methylation of RNA and Resistance to Antibiotics. In: Bryan, L.E. (eds) Microbial Resistance to Drugs. Handbook of Experimental Pharmacology, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74095-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74095-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74097-8

  • Online ISBN: 978-3-642-74095-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics