Role of the Outer Membrane of Gram-Negative Bacteria in Antimicrobial Resistance

  • H. Nikaido
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 91)

Abstract

The extensive use of antibiotics in recent years has been very effective in combating infections caused by “classical” pathogenic bacteria, but at the same time it produced an increase in infections, often hospital-acquired, by antibiotic-resistant gram-negative bacteria of moderate or even marginal pathogenicity (McGowan 1985). The general resistance to antibiotics, often encountered in such gram-negative bacteria, is largely due to the presence of an extra membrane layer on the surface of these organisms: the outer membrane of these bacteria acts as an effective permeation barrier and retards the influx of antibiotic molecules into the bacterial cell.

Keywords

Pseudomonas Tetracycline Gentamicin Chloramphenicol Catechol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambler RP (1980) The structure of ß-lactamases. Philos Trans R Soc (Lond) [Biol] 289B: 321–331Google Scholar
  2. Angus BL, Carey AM, Canon DA, Kropinski AMB, Hancock REW (1982) Outer membrane permeability of Pseudomonas aeruginosa: comparison of a wild type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother 21: 299–308PubMedGoogle Scholar
  3. Aoyama H, Sato K, Kato T, Hirai K, Mitsuhashi S (1987) Norfloxacin resistance in a clinical isolate of Escherichia coli. Antimicrob Agents Chemother 31: 1640–1641PubMedGoogle Scholar
  4. Ashby J, Piddock LJV, Wise R (1985) An investigation of the hydrophobicity of the quinolones. J Antimicrob Chemother 16: 805–810PubMedGoogle Scholar
  5. Bavoil P, Nikaido H, von Meyenburg K (1977) Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol Gen Genet 158: 23–33PubMedGoogle Scholar
  6. Beggs WH, Andrews FA (1976) Role of ionic strength in salt antagonism of aminoglycoside action on Escherichia coli and Pseudomonas aeruginosa. J Infect Dis 134: 500–504PubMedGoogle Scholar
  7. Benz R (1985) Porin from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem 19: 145–190PubMedGoogle Scholar
  8. Benz R, Hancock REW (1981) Properties of the large ion-permeable pores formed from protein F of Pseudomonas aeruginosa in lipid bilayer membranes. Biochim Biophys Acta 646: 298–308PubMedGoogle Scholar
  9. Biagi GL, Guerra MC, Barbaro AM, Gamba MF (1970) Influence of lipophilic character on the antibacterial activity of cephalosporins and penicillins. J Med Chem 13: 511–515PubMedGoogle Scholar
  10. Bird AE, Nayler JHC (1971) Design of penicillins. In: Ariens EJ (ed) Drug design, vol 2. Academic, New York, pp 277–318Google Scholar
  11. Breuer H, Bisacchi GS, Drossard JM, Ermann P, Koster WH, Kronenthal D, Kuester P et al. (1985) Structure-activity relationships among sulfonylaminocarbonyl activated monobactams leading to SQ 83,360 (Abstr). 25th Interscience Conference on Antimicrobial Agents Chemotherapy, MinneapolisGoogle Scholar
  12. Burns JL, Mendelman PM, Levy J, Stull TL, Smith AL (1985) A permeability barrier as a mechanism of chloramphenicol resistance in Haemophilus influenzae. Antimicrob Agents Chemother 27: 46–54PubMedGoogle Scholar
  13. Burns JL, Rubens CE, Mendelman PM, Smith AL (1986) Cloning and expression in Escherichia coli of a gene encoding nonenzymatic chloramphenicol resistance from Pseudomonas aeruginosa. Antimicrob Agents Chemother 29: 445–450PubMedGoogle Scholar
  14. Büscher K-H, Cullman W, Dick W, Opferkuch W (1987) Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob Agents Chemother 31: 703–708PubMedGoogle Scholar
  15. Bush K, Tanaka SK, Bonner DP, Sykes RB (1985) Resistance caused by decreased penetration of ß-lactam antibiotics into Enterobacter cloacae. Antimicrob Agents Chemother 27: 555–560PubMedGoogle Scholar
  16. Caulcott CA, Brown MRW, Gonda I (1984) Evidence for small pores in the outer membrane of Pseudomonas aeruginosa. FEMS Microbiol Lett 21: 119–123Google Scholar
  17. Chapman JS, Georgopapadakou NH (1988) Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother 32: 438–442PubMedGoogle Scholar
  18. Coulton JW, Mason P, Dorrance D (1983) The permeability barrier of Haemophilus in- fluenzae type b against ß-lactam antibiotics. J Antimicrob Chemother 12: 435–449PubMedGoogle Scholar
  19. Curtis NAC, Orr D, Ross GW, Boulton MG (1979) Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity. Antimicrob Agents Chemother 16: 533–539PubMedGoogle Scholar
  20. Curtis NAC, Eisenstadt RL, Turner KA, White AJ (1985) Porin-mediated cephalosporin resistance in Escherichia coli K-12. J Antimicrob Chemother 15: 642–644PubMedGoogle Scholar
  21. Decad GM, Nikaido H (1976) Outer membrane of gram-negative bacteria. XII. Molecular-sieving function of cell wall. J Bacteriol 128: 325–336Google Scholar
  22. Donovick R, Bayan AP, Canales P, Pansy F (1948) The influence of certain substances on the activity of streptomycin. III. Differential effects of various electrolytes on the action of streptomycin. J Bacteriol 56: 125–137Google Scholar
  23. Flammann HT, Weckesser J (1984) Porin isolated from the cell envelope of Rhodopseudomonas capsulata. J Bacteriol 159: 410–412PubMedGoogle Scholar
  24. Foster JW, Woodruff HB (1943) Microbiological aspects of streptothricin. II. Antibiotic activity of streptothricin. Arch Biochem 3: 241–255Google Scholar
  25. Foulds J, Chai T-J (1978) New major outer membrane protein found in an Escherichia coli tolF mutant resistant to bacteriophage TuIb. J Bacteriol 133: 1478–1483PubMedGoogle Scholar
  26. Frère J-M, Joris B (1985) Penicillin-sensitive enzymes in peptidoglycan biosynthesis. CRC Crit Rev Microbiol 4: 299–396Google Scholar
  27. Funahara Y, Nikaido H (1980) Asymmetric localization of lipopolysaccharides on the outer membrane of Salmonella typhimurium. J Bacteriol 141: 1463–1465PubMedGoogle Scholar
  28. George AM, Levy SB (1983) Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J Bacteriol 155: 541–548PubMedGoogle Scholar
  29. Gilleland HE Jr, Lyle RD (1979) Chemical alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. J Bacteriol 138: 839–845PubMedGoogle Scholar
  30. Godfrey AJ, Hatlelid L, Bryan LE (1984) Correlation between lipopolysaccharide structure and permeability resistance in ß-lactam-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 26: 181–186PubMedGoogle Scholar
  31. Goldstein FW, Gutmann L, Williamson R, Collatz E, Acar JF (1983) In vivo and in vitro emergence of simultaneous resistance to both ß-lactam and aminoglycoside antibiotics in a strain of Serratia marcescens. Ann Microbiol (Paris) 134: 329–337Google Scholar
  32. Gutmann L, Chabbert YA (1984) Different mechanisms of resistance to latamoxef (moxalactam) in Serratia marcescens. J Antimicrob Chemother 13: 15–22PubMedGoogle Scholar
  33. Gutmann L, Williamson R, Collatz E (1984) The possible role of porins in bacterial antibiotic resistance. Ann Intern Med 101: 554–557PubMedGoogle Scholar
  34. Gutmann L, Williamson R, Moreau N, Kitzis M-D, Collatz E, Acar JF, Goldstein FW (1985) Cross-resistance to nalidixic acid, trimethoprim, and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter, and Serratia. J Infect Dis 151: 501–507PubMedGoogle Scholar
  35. Gutmann L, Billot-Klein D, Williamson R, Goldstein FW, Mounier J, Acar JF, Collatz E (1988) Mutation of Salmonella paratyphi A conferring cross-resistance to several groups of antibiotics by decreased permeability and loss of invasiveness. Antimicrob Agents Chemother 32: 195–201PubMedGoogle Scholar
  36. Guymon LF, Sparling PF (1975) Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive mutants of Neisseria gonorrhoeae. J Bacteriol 124: 757–763PubMedGoogle Scholar
  37. Guymon LF, Walstad DL, Sparling PF (1978) Cell envelope alterations in antibiotic-sensitive and -resistant strains of Neisseria gonorrhoeae. J Bacteriol 136: 391–401PubMedGoogle Scholar
  38. Hancock REW, Carey AM (1980) Protein D1: a glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa. FEMS Microbiol Lett 8: 105–109Google Scholar
  39. Hancock REW, Decad GM, Nikaido H (1979) Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa. Biochim Biophys Acta 554: 323–331PubMedGoogle Scholar
  40. Hancock REW, Raffle VJ, Nicas TI (1981) Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 19: 777–785PubMedGoogle Scholar
  41. Harder KJ, Nikaido H, Matsuhashi M (1981) Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompFporin. Antimicrob Agents Chemother 20: 549–552PubMedGoogle Scholar
  42. Hewinson RG, Lane DC, Slack MPE, Nichols WW (1986) The permeability parameter of the outer membrane of Pseudomonas aeruginosa varies with the concentration of a test substrate, cephalosporin C. J Gen Microbiol 132: 27–33PubMedGoogle Scholar
  43. Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S (1986a) Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 29: 535–538PubMedGoogle Scholar
  44. Hirai K, Aoyama H, Suzue S, Irikura T, Iyobe S, Mitsuhashi S (1986b) Isolation and characterization of norfloxacin-resistant mutants of Escherichia coli K-12. Antimicrob Agents Chemother 30: 248–253PubMedGoogle Scholar
  45. Hirai S, Suzue S, Irikura T, Iyobe S, Mitsuhashi S (1987) Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 31: 582–586PubMedGoogle Scholar
  46. Hobot JA, Carlmalm E, Villiger W, Kellenberger E (1984) Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J Bacteriol 160: 143–152PubMedGoogle Scholar
  47. Hooper DC, Wolfson JS, Souza KS, Tung C, McHugh GL, Swartz MN (1986) Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli. Antimicrob Agents Chemother 29: 639–644PubMedGoogle Scholar
  48. Ishii J, Nakae T (1988) Size of diffusion pore of Alcaligenes faecalis. Antimicrob Agents Chemother 32: 378–384PubMedGoogle Scholar
  49. Iyer R, Darby V, Holland IB (1978) Alterations in the outer membrane proteins of Escherichia coli B/r associated with the presence of the R plasmid rRM98. FEBS Lett 85: 127–132PubMedGoogle Scholar
  50. Jaffé A, Chabbert YA, Derlot E (1983) Selection and characterization of ß-lactam-resistant Escherichia coli K-12 mutants. Antimicrob Agents Chemother 23: 622–625PubMedGoogle Scholar
  51. Joris B, De Meester F, Galleni M, Masson S, Dussart J, Frère J-M, Van Beeumen J, Bush K, Sykes R (1986) Properties of a class C ß-lactamase from Serratia marcescens. Biochem J 239: 581–586PubMedGoogle Scholar
  52. Kamio Y, Nikaido H (1976) Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium. Biochemistry 15: 2561–2570PubMedGoogle Scholar
  53. Kaneko M, Yamaguchi A, Sawai T (1985) Purification and characterization of two kinds of porins from the Enterobacter cloacae outer membrane. J Bacteriol 158: 1179–1181Google Scholar
  54. Katsu K,. Inoue M, Mitsuhashi S (1982) In vitro antibacterial activity of E-0702, a new semisynthetic cephalosporin. Antimicrob Agents Chemother 22: 181–185Google Scholar
  55. Kobayashi Y, Takahashi I, Nakae T (1982) Diffusion of ß-lactam antibiotics through liposome membranes containing purified porins. Antimicrob Agents Chemother 2: 775780Google Scholar
  56. Kojo H, Shigi Y, Nishida M (1980a) A novel method for evaluating the outer membrane permeability to ß-lactamase-stable ß-lactam antibiotics. J Antibiot (Tokyo) 33: 310–316Google Scholar
  57. Kojo H, Shigi Y, Nishida M (1980b) Enterobacter cloacae outer membrane permeability to ceftizoxime (FK749) and five other cephalosporin derivatives. J Antibiot (Tokyo) 33: 317–321Google Scholar
  58. Labischinski H, Barnickel G, Bradaczek H, Naumann D, Rietschel ET; Giesbrecht P (1985) High state of order of isolated bacterial lipopolysaccharide and its possible contribution to the permeation barrier property of the outer membrane. J Bacteriol 162: 920Google Scholar
  59. Leive L (1974) The barrier function of the gram-negative envelope. Ann NY Acad Sci 235: 109–127PubMedGoogle Scholar
  60. Leive L, Telesetsky S, Coleman WG Jr, Carr D (1984) Tetracyclines of various hydrophobicities as a probe for permeability of Escherichia coli outer membranes. Antimicrob Agents Chemother 25: 539–544PubMedGoogle Scholar
  61. Livermore DM (1983) Kinetics and significance of the activity of the Sabbath and Abraham’s ß-lactamase of Pseudomonas aeruginosa against cefotaxime and cefsulodin. J Antimicrob Chemother 11: 169–179PubMedGoogle Scholar
  62. Loh B, Grant C, Hancock REW (1984) Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interaction of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 26: 546–551PubMedGoogle Scholar
  63. Lounatmaa K, Mäkelä PH, Sarvas M (1976) The effect of polymyxin on the outer membrane of Salmonella: ultrastructure of wild-type and polymyxin-resistant strains. J Bacteriol 127: 1900–1907Google Scholar
  64. Luckey M, Nikaido H (1980a) Specificity of diffusion channels produced by phage receptor protein of Escherichia coli. Proc Natl Acad Sci USA 77: 167–171PubMedGoogle Scholar
  65. Luckey M, Nikaido H (1980b) Diffusion of solutes through channels produced by phage lambda receptor protein of Escherichia coli: inhibition by higher oligosaccharides of maltose series. Biochem Biophys Res Commun 93: 166–171PubMedGoogle Scholar
  66. Lugtenberg B, van Alphen L (1983) Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta 737: 51–115PubMedGoogle Scholar
  67. Lysko PG, Morse SA (1981) Neisseria gonorrhoeae cell envelope: permeability to hydrophobic molecules. J Bacteriol 145: 946–952Google Scholar
  68. Maness MJ, Sparling PF (1973) Multiple antibiotic resistance due to a single mutation in Neisseria gonorrhoeae. J Infect Dis 128: 321–330PubMedGoogle Scholar
  69. McGowan JE Jr (1985) Changing etiology of nosocomial bacteremia and fungemia and other hospital-acquired infections. Rev Infect Dis [Suppl 3] 7: S357 - S370Google Scholar
  70. McMurry LM, Cullinane JC, Levy SB (1982) Transport of the lipophilic analog minocycline differs from that of tetracycline in susceptible and resistant Escherichia coli strains. Antimicrob Agents Chemother 22: 791–799PubMedGoogle Scholar
  71. Medeiros AA, O’Brien TF, Wacker WEC, Yulug NF (1971) Effect of salt concentration on the apparent in vitro susceptibility of Pseudomonas and other gram-negative bacilli to gentamicin. J Infect Dis [Suppl] 124: S59 - S64Google Scholar
  72. Medeiros AA, O’Brien TF, Rosenberg EY, Nikaido H (1987) Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J Infect Dis 156: 751–757PubMedGoogle Scholar
  73. Mitsuyama J, Hiruma R, Yamaguchi A, Sawai T (1987) Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of ß-lactams Antimicrob Agents Chemother 31: 379–384PubMedGoogle Scholar
  74. Mouton RP, Mulders LTA (1987) Combined resistance to quinolones and beta-lactams after in vitro transfer on single drugs. Chemotherapy 33: 189–196PubMedGoogle Scholar
  75. Mühlradt PF, Golecki JR (1975) Asymmetrical distribution and artifactual reorientation of lipopolysaccharide in the outer membrane bilayer of Salmonella typhimurium. Eur J Biochem 51: 343–352PubMedGoogle Scholar
  76. Murakami K, Yoshida T (1982) Penetration of cephalosporins and corresponding 1-oxacephalosporins through the outer layer of gram-negative bacteria and its contribution to antibacterial activity. Antimicrob Agents Chemother 21: 254–258PubMedGoogle Scholar
  77. Nagai Y, Mitsuhashi S (1972) New type of R factors incapable of inactivating chloramphenicol. J Bacteriol 109: 1–7PubMedGoogle Scholar
  78. Nakae R, Nakae T (1982) Diffusion of aminoglycoside antibiotics across the outer membrane of Escherichia coli. Antimicrob Agents Chemother 22: 554–559PubMedGoogle Scholar
  79. Nicas TI, Hancock REW (1980) Outer membrane H1 of Pseudomonas aeruginosa: involvement in adoptive and mutational resistance to ethylenediamine-tetraacetate, polymyxin B, and gentamicin. J Bacteriol 143: 872–878PubMedGoogle Scholar
  80. Nicas TI, Hancock REW (1983) Outer membrane permeability in Pseudomonas aeruginosa: isolation of a porin protein F-deficient mutant. J Bacteriol 153: 281–285PubMedGoogle Scholar
  81. Nichols WW, Hewinson RG, Slack MPE, Walsmley HL (1985) Estimation of the permeability parameter ( C) for the flux of a charged molecule across the gram-negative bacterial outer membrane. Biochem Soc Trans 13: 697–698Google Scholar
  82. Nikaido H (1976) Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic compounds. Biochim Biophys Acta 433: 118–132PubMedGoogle Scholar
  83. Nikaido H (1983) Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor protein. Methods Enzymol 97: 85–100PubMedGoogle Scholar
  84. Nikaido H (1985) Role of permeability barriers in resistance to ß-lactam antibiotics. Pharmacol Ther 27: 197–231PubMedGoogle Scholar
  85. Nikaido H (1986) Transport through the outer membrane of bacteria. Methods Enzymol 125: 265–278PubMedGoogle Scholar
  86. Nikaido H, Gehring K (1987) Significance of outer membrane barrier in ß-lactam resistance. In: Shockman GD (ed) Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, WashingtonGoogle Scholar
  87. Nikaido H, Hancock REW (1986) Outer membrane permeability of Pseudomonas aeruginosa. In: Sokatch JR (ed) The bacteria, vol 10. Academic, Orlando, pp 145–193Google Scholar
  88. Nikaido H, Nakae T (1979) The outer membrane of gram-negative bacteria. Adv Microb Physiol 20: 163–250PubMedGoogle Scholar
  89. Nikaido H, Normark S (1987) Sensitivity of Escherichia coli to various ß-lactams is determined by the interplay of outer membrane permeability and degradation by periplasnùc ß-lactamases: a quantitative predictive treatment. Mol Microbiol 1: 29–36PubMedGoogle Scholar
  90. Nikaido H, Rosenberg EY (1983) Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153: 241–252PubMedGoogle Scholar
  91. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 45: 1–32Google Scholar
  92. Nikaido H, Takeuchi Y, Ohnishi S, Nakae T (1977a) Outer membrane of Salmonella typhimurium. Electron spin resonance studies. Biochim Biophys Acta 465: 152–164PubMedGoogle Scholar
  93. Nikaido H, Bavoil P, Hirota Y (1977b) Outer membranes of gram-negative bacteria. XV. Transmembrane diffusion rates in lipoprotein-deficient mutants of Escherichia coli. J Bacteriol 132: 1045–1047PubMedGoogle Scholar
  94. Nikaido H, Rosenberg EY, Foulds J (1983) Porin channels in Escherichia coli: studies with ß-lactams in intact cells. J Bacteriol 153: 232–240PubMedGoogle Scholar
  95. Ohi N, Aoki B, Shinozaki T, Moro K, Noto T, Nehashi T, Okazaki H, Matsunaga I (1986) Semisynthetic ß-lactam antibiotics. I. Synthesis and antibacterial activity of new ureidopenicillin derivatives having catechol moieties. J Antibiot (Tokyo) 39: 230–241Google Scholar
  96. Parr TR Jr, Bryan LE (1984) Nonenzymatic resistance to ß-lactam antibiotics and resistance to other cell wall synthesis inhibitors. In: Bryan LE (ed) Antimicrobial drug resistance. Academic, Orlando, pp 81–111Google Scholar
  97. Parr TR Jr, Moore RA, Moore LV, Hancock REW (1987) Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia. Antimicrob Agents Chemother 31: 121–123PubMedGoogle Scholar
  98. Piddock LJV, Wise R (1986) The effect of altered porin expression in Escherichia coli upon susceptibility to 4-quinolones. J Antimicrob Chemother 18: 547–552PubMedGoogle Scholar
  99. Piddock LJV, Wijnands WJA, Wise R (1987) Quinolone/ureidopenicillin cross-resistance. Lancet 2: 907PubMedGoogle Scholar
  100. Plotz PH, Dubin DT, Davis BD (1961) Influence of salts on the uptake of streptomycin by Escherichia coli. Nature 191: 1324–1325PubMedGoogle Scholar
  101. Pugsley AP, Schnaitman C (1978) Outer membrane proteins of Escherichia coli. VII. Evidence that bacteriophage-directed protein 2 functions as a potin. J Bacteriol 133: 1181–1189PubMedGoogle Scholar
  102. Quinn JP, Dudek EJ, DiVincenzo CA, Lucks DA, Lerner SA (1986) Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. J Infect Dis 154: 289–294PubMedGoogle Scholar
  103. Reeve ECR, Dougherty P (1968) Linkage relationships of two genes causing partial resistance to chloramphenicol in Escherichia coli. J Bacteriol 96: 1450–1451PubMedGoogle Scholar
  104. Richmond MH, Sykes RB (1973) The ß-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol 9: 31–85PubMedGoogle Scholar
  105. Richmond MH, Clark DC, Wotton S (1976) Indirect method for assessing the penetration of beta-lactamase-non-susceptible penicillins and cephalosporins in Escherichia coli strains. Antimicrob Agents Chemother 10: 215–218PubMedGoogle Scholar
  106. Rodriguez-Tébar A, Rojo F, Montilla JC, Vazquez D (1982) Interaction of ß-lactam antibiotics with penicillin-binding proteins from Pseudomonas aeruginosa. FEMS Microbiol Lett 14: 295–298Google Scholar
  107. Rosenthal K, Storm DB (1977) Disruption of the Escherichia coli outer membrane permeability barrier by immobilized polymyxin B. J Antibiot (Tokyo) 30: 1087–1092Google Scholar
  108. Sanders CC (1983) Novel resistance selected by the new expanded-spectrum cephalosporins: a concern. J Infect Dis 147: 585–589PubMedGoogle Scholar
  109. Sanders CC, Watanakunakorn C (1986) Emergence of resistance to ß-lactams, amino-glycosides, and quinolones during combination therapy for infection due to Serratia marcescens. J Inf Dis 153: 617–619Google Scholar
  110. Sanders CC, Sanders WE Jr, Goering RV, Werner V (1984) Selection of multiple antibiotic resistance by quinolones, ß-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother 26: 797–801PubMedGoogle Scholar
  111. Sawai T, Matsuba K, Yamagishi S (1977) A method for measuring the outer membrane permeability of ß-lactam antibiotics in gram-negative bacteria. J Antibiot (Tokyo) 30: 1134–1136Google Scholar
  112. Sawai T, Hiruma R, Kawana N, Kaneko M, Taniyasu F, Inami A (1982) Outer membrane permeation of ß-lactam antibiotics in Escherichia coli, Proteus mirabilis, and Enterobacter cloacae. Antimicrob Agents Chemother 22: 585–592PubMedGoogle Scholar
  113. Sawai T, Hirano S, Yamaguchi A (1987) Repression of porin synthesis by salicylate in Escherichia coli, Klebsiella pneumoniae, and Serratia marcescens. FEMS Microbiol Lett 40: 233–237Google Scholar
  114. Sen K, Hellman J, Nikaido H (1988) Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J Biol Chem 263: 1182–1187PubMedGoogle Scholar
  115. Shimizu K, Kuroda T, Hsieh W-C, Chung H-Y, Chong Y, Hare RS, Miller GH et al. (1985) Comparison of aminoglycoside resistance patterns in Japan, Formosa, and Korea, Chile, and the United States. Antimicrob Agents Chemother 28: 282–288PubMedGoogle Scholar
  116. Smit J, Kamio Y, Nikaido H (1975) Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J Bacteriol 124: 942–958PubMedGoogle Scholar
  117. Smith JT, Hamilton-Miller JMT, Knox R (1964) Quinacillin: a comparison with other penicillinase-resistant penicillins Nature 203: 1148–1150PubMedGoogle Scholar
  118. Sparling PF (1977) Antibiotic resistance in the gonococcus. In: Roberts RB (ed) The gonococcus. Wiley, New York, pp 111–135Google Scholar
  119. Stein WD (1967) The movement of molecules across cell membranes. Academic, New YorkGoogle Scholar
  120. Stock JB, Rauch B, Roseman S (1977) Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252: 7850–7861PubMedGoogle Scholar
  121. Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46: 723–763PubMedGoogle Scholar
  122. Sykes RB, Matthew M (1976) The ß-lactamases of gram-negative bacteria and their role in resistance to ß-lactam antibiotics. J Antimicrob Chemother 2: 115–157PubMedGoogle Scholar
  123. Teuber M (1970) Lysozyme-dependent production of spheroplasts-like bodies from polymyxin B treated Salmonella typhimurium. Arch Mikrobiol 70: 139–146PubMedGoogle Scholar
  124. Teuber M, Bader J (1976) Action of polymyxin on bacterial membranes. Binding capacities for polymyxin B of inner and outer membranes isolated from Salmonella typhimurium G30. Arch Microbiol 109: 51–58PubMedGoogle Scholar
  125. Then RL, Angehrn P (1986) Multiply resistant mutants of Enterobacter cloacae selected by ß-lactam antibiotics. Antimicrob Agents Chemother 30: 684–688PubMedGoogle Scholar
  126. Traub WH, Bauer D (1987) Outer membrane protein alterations in Serratia marcescens resistant against aminoglycoside and ß-lactam antibiotics. Chemotherapy 33: 172–176PubMedGoogle Scholar
  127. Trias J, Rosenberg EY, Nikaido H (1988) Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa. Biochim Biophys Acta 938: 493–496PubMedGoogle Scholar
  128. Vaara M, Vaara T (1983a) Polycations sensitizes enteric bacteria to antibiotics. Antimicrob Agents Chemother 24: 107–113PubMedGoogle Scholar
  129. Vaara M, Vaara T (1983b) Polycations as outer membrane disorganizing agents. Antimicrob Agents Chemother 24: 114–122PubMedGoogle Scholar
  130. Vaara M, Vaara T, Jensen M, Helander I, Nurminen M, Rietschel ET, Mäkelä PH (1981) Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett 129: 145–149PubMedGoogle Scholar
  131. Vachon V, Lyew DJ, Coulton JW (1985) Transmembrane permeability channels across the outer membrane of Haemophilus influenzae type b. J Bacteriol 162: 918–924PubMedGoogle Scholar
  132. Vu H, Nikaido H (1985) Role of ß-lactam hydrolysis in the mechanism of resistance of a ß-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum ß-lactams. Antimicrob Agents Chemother 27: 393–398PubMedGoogle Scholar
  133. Waley SG (1987) An explicit model for bacterial resistance: application to ß-lactam antibiotics. Microbiol Sci 4: 143–146PubMedGoogle Scholar
  134. Watanabe N, Nagasu T, Katsu K, Kitoh K (1987) E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob Agents Chemother 31: 497–504PubMedGoogle Scholar
  135. Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105: 207–216PubMedGoogle Scholar
  136. Weckesser J, Zalman LS, Nikaido H (1984) Porin from Rhodopseudomonas sphaeroides. J Bacteriol 159: 199–205PubMedGoogle Scholar
  137. Werner V, Sanders CC, Sanders WE Jr, Goering RV (1985) Role of ß-lactamases and outer membrane proteins in multiple ß-lactam resistance of Enterobacter cloacae. Antimicrob Agents Chemother 27: 455–459PubMedGoogle Scholar
  138. Woodruff WA, Parr TR Jr, Hancock REW, Hanne L, Nicas TI, Iglewski B (1986) Expression in Escherichia coli and function of porin protein F of Pseudomonas aeruginosa. J Bacteriol 167: 473–479PubMedGoogle Scholar
  139. Yamaguchi A, Hiruma R, Sawai T (1982) Phospholipid bilayer permeability of beta-lactam antibiotics. J Antibiot (Tokyo) 35: 1692–1699Google Scholar
  140. Yamaguchi A, Yanai M, Tomiyama N, Sawai T (1986) Effects of magnesium and sodium ions on the outer membrane permeability of cephalosporins in Escherichia coli. FEBS Lett 208: 43–47PubMedGoogle Scholar
  141. Yoneyama H, Nakae T (1986) A small diffusion pore in the outer membrane of Pseudomonas aeruginosa. Eur J Biochem 157: 33–38PubMedGoogle Scholar
  142. Yoneyama H, Akatsuka A, Nakae T (1986) The outer membrane of Pseudomonas aeruginosa is a barrier against the penetration of disaccharides. Biochem Biophys Res Commun 134: 106–112PubMedGoogle Scholar
  143. Yoshimura F, Nikaido H (1982) Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol 152: 636–642PubMedGoogle Scholar
  144. Yoshimura F, Nikaido H (1985) Diffusion of ß-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 27: 84–92PubMedGoogle Scholar
  145. Yoshimura F, Zalman LS, Nikaido H (1983) Purification and properties of Pseudomonas aeruginosa porin. J Biol Chem 258: 2308–2314PubMedGoogle Scholar
  146. Young JDE, Blake M, Mauro A, Cohn ZA (1983) Properties of the major outer membrane protein from Neisseria gonorrhoeae incorporated into model lipid membranes. Proc Natl Acad Sci USA 80: 3831–3835PubMedGoogle Scholar
  147. Zalman LS (1982) Pore-forming proteins of bacterial and mitochondria) outer membranes. PhD thesis, University of California, BerkeleyGoogle Scholar
  148. Zalman LS, Nikaido H (1985) Dimeric porin from Paracoccus denitrificans. J Bacteriol 162: 430–433PubMedGoogle Scholar
  149. Zimmermann W (1980) Penetration of ß-lactam antibiotics into their target enzymes in Pseudomonas aeruginosa: comparison of a highly sensitive mutant with its parental strain. Antimicrob Agents Chemother 18: 94–100PubMedGoogle Scholar
  150. Zimmermann W, Rosselet A (1977) Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother 12: 368–372PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • H. Nikaido

There are no affiliations available

Personalised recommendations