Optics and Evolution of the Compound Eye

  • Dan-Eric Nilsson

Abstract

During the last 100 years, the number of known optical types of compound eye has grown from one to at least seven. With this increasing knowledge we have learned That there are many ways to construct image-forming optical systems and the similarity of compound eyes of different animals is indeed only superficial The radicallydifferentopticalsystemsfound in theeyes of closelyrelatedgroupsof both insects and crustaceans present a serious problem concerning the evolution of optical mechanisms: some compound eyes form multiple inverted images whereas others form a single erect image. The problem arises from the fact that hypothetical intermediate designs may seem nonfunctional.

Keywords

Migration Agar Retina Expense Refraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum H (ed) (1981) Light and dark adaptation in invertebrates. In: Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 1–91.Google Scholar
  2. Autrum H, Wiedemann I (1962) Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z Naturforsch 17:480–482.Google Scholar
  3. Ball EE (1977) Fine structure of the compound eyes of the midwater amphipod Phronima in relation to behaviour and habitat. Tissue Cell 9:521–536.PubMedCrossRefGoogle Scholar
  4. Ball EE, Kao LC, Stone RC, Land MF (1986) Eye structure and optics in the pelagic shrimp Acetes sibogae (Decapoda, Natantia, Sergestidae) in relation to light-dark adaptation and natural history. Philos Trans R Soc London Ser B 313:251–270.CrossRefGoogle Scholar
  5. Barlow HB (1952) The size of ommatidia in apposition eyes. J Exp Biol 29:667–674.Google Scholar
  6. Beersma DGM, Hoenders BJ, Huiser AMJ, Toorn P van (1982) Refractive index of the fly rhabdomere. J Opt Soc Am 72:583–588.PubMedCrossRefGoogle Scholar
  7. Behrens ME (1974) Photomechanical changes in the ommatidia of the Limulus lateral eye during light and dark adaptation. J Comp Physiol 89:45–57.CrossRefGoogle Scholar
  8. Bernhard CG (ed) (1966) Opening address. In: The functional organization of the compound eye. Pergamon, Oxford New York, pp. 1–11.Google Scholar
  9. Boll F (1871) Beiträge zur physiologischen Optik. Arch Anat Physiol Wiss Med 1:530–549.Google Scholar
  10. Brammer JD (1970) The ultrastructure of the compound eye of a mosquito A edes aegypti L. J Exp Zool 175:181–196.CrossRefGoogle Scholar
  11. Bryceson KP (1981) Focusing of light by corneal lenses in a reflecting superposition eye. J Exp Biol 90:347–350.Google Scholar
  12. Bryceson KP, Mclntyre P (1983) Image quality and acceptance angle in a reflecting superposition eye. J Comp Physiol A 151:367–380.CrossRefGoogle Scholar
  13. Burghause F (1976) Adaptationserscheinungen in den Komplexaugen von Gyrinus natator L. (Coleoptera: Gyrinidae). Int J Insect Morphol Embryol 5:335–348.CrossRefGoogle Scholar
  14. Bursey CR (1975) The microanatomy of the compound eye of Munida irrasa (Decapoda: Galatheidae). Cell Tissue Res 160:505–514.PubMedCrossRefGoogle Scholar
  15. Burton PR, Stockhammer KA (1969) Electron microscopic studies of the compound eye of the toadbug, Gelastocoris oeulatus. J Morphol 127:233–258.CrossRefGoogle Scholar
  16. Burtt ET, Catton WT (1961) Is the mosaic theory of insect vision true? Int Congr Entanol 11:670–673.Google Scholar
  17. Burtt ET, Catton WT (1966) The role of diffraction in compound eye vision. In: Bernhard CG (ed) The functional organization of the compound eye. Pergamon, Oxford New York, pp 63–76.Google Scholar
  18. Caveney S (1986) The phylogenetic significance of ommatidium structure in the compound eyes of polyphagan beetles. Can J Zool 64:1787–1819.CrossRefGoogle Scholar
  19. Caveney S, Mclntyre P (1981) Design of graded-index lenses in the superposition eyes of scarab beetles. Phil Trans R Soc London Ser B 294:589–635.CrossRefGoogle Scholar
  20. Chu H, Norris DM, Carlson SD (1975) Ultrastructure of the compound eye of the diploid female beetle, Xyleborus ferrugineus. Cell Tissue Res 165:23–26.PubMedCrossRefGoogle Scholar
  21. Chun C (1896) Leuchtorgane und Facettenaugen. Bibl Zool 19:191–262.Google Scholar
  22. Cleary P, Deichsel G, Kunze P (1977) The superposition image in the eye of Ephestia kühniella. J Comp Physiol A 119:73–84.CrossRefGoogle Scholar
  23. Cronin TW (1986) Optical design and evolutionary adaptation in crustacean eyes. J Crustacean Biol 6:1–23.CrossRefGoogle Scholar
  24. Darwin C (1859) On the origin of species by means of natural selection. Oxford Univ Press.Google Scholar
  25. Debaisieux P (1944) Les yeux des Crustacés: structure, développement, réactions à l’éclairement. Cellule 50:9–122.Google Scholar
  26. Demoli R (1917) Die Sinnesorgane der Arthropoden, ihr Bau und ihre Funktion. Vieweg, Braunschweig.Google Scholar
  27. Denys CJ, Adamian M, Brown PK (1983) Ultrastructure of eye of a euphausiid crustacean. Tissue Cell 15:77–95.PubMedCrossRefGoogle Scholar
  28. Dietrich W (1909) Die Facettenaugen der Dipteren Z Wiss Zool 92:465–539.Google Scholar
  29. Døving KB, Miller WH (1969) Function of insect compound eyes containing crystalline tracts. J Gen Physiol 54:250–267.PubMedCrossRefGoogle Scholar
  30. Edwards AS (1969) The structure of the eye of the Ligia oceanica L. Tissue Cell 1:217–228.PubMedCrossRefGoogle Scholar
  31. Elofsson R, Hallberg E (1977) Compound eyes of some deep-sea and fiord mysid crustaceans. Acta Zool (Stockholm) 58:169–177.CrossRefGoogle Scholar
  32. Elofsson R, Hallberg E, Nilsson HL (1980) The juxtaposed compound eye and organ of Bellonci in Haploops tubicola (Crustacea: Amphipoda) — The fine structure of the organ of Bellonci. Zoomorphologie 96:255–262.CrossRefGoogle Scholar
  33. Eltringham H (1933) The senses of insects. Methuen’s Biol Monogr, London.Google Scholar
  34. Exner S (1876) Uber das Sehen von Bewegungen und die Theorie des zusammengesetzten Auges. Sitz Ber Kaiserl Akad Wiss Math Nat Wiss 72:156–191.Google Scholar
  35. Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Deuticke, Leipzig Wien.CrossRefGoogle Scholar
  36. Fahrenbach WH (1975) The visual system of the horseshoe crab Limulus polyphemus. Int Rev Cytol 41:285–349.PubMedCrossRefGoogle Scholar
  37. Fincham AA (1980) Eyes and classification of malacostracan crustaceans. Nature (London) 287:729–731.CrossRefGoogle Scholar
  38. Fincham AA (1984) Ontogeny and optics of the eyes of the common prawn Palaemon (Palaemon) serratus (Pennant, 1777). Zool J Linnean Soc 81:89–113.CrossRefGoogle Scholar
  39. Fischer A, Horstmann G (1971) Der Feinbau des Auges der Mehlmotte, Ephestia kühniella Zeller (Lepidoptera, Pyralididae). Z Zellforsch 116:275–304.PubMedCrossRefGoogle Scholar
  40. Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 97–125.Google Scholar
  41. Gokan N, Hosobuchi K (1979a) Fine structure of the compound eyes of the longicorn beetles (Coleoptera: Cerambycidae). Appl Entomol Zool 14:12–27.Google Scholar
  42. Gokan N, Hosobuchi K (1979b) Ultrastructure of the compound eye of the Longicorn beetle, Prionus insularis Motschulsky (Coleoptera: Cerambycidae). Kontyû 47:105–116.Google Scholar
  43. Gotische A (1852) Beitrag zur Anatomie und Physiologie des Auges der Krebse und Fliegen. Arch Anat Physiol Wiss Med 483-492.Google Scholar
  44. Grenacher H (1877) Untersuchungen über das Arthropodenauge. Beil Klin Monatsbl Augenheilkd 15.Google Scholar
  45. Grenacher H (1879) Untersuchungen über das Sehorgan der Arthropoden, inbesondere der Spinnen, Insecten und Crustaceen. Vandenhoek & Ruprecht, Göttingen.Google Scholar
  46. Grüel C (1844) Mikroskopische Beobachtungen. Ann Phys Chem 61:220–222.CrossRefGoogle Scholar
  47. Hallberg E (1977) The fine structure of the compound eyes of mysids (Crustacea: Mysidacea). Cell Tissue Res 184:45–65.PubMedCrossRefGoogle Scholar
  48. Hallberg E, Nilsson D-E (1983) The euphausiid (Crustacea: Euphausiacea) compound eye — a morphological re-investigation. Zoomorphology 103:59–66.CrossRefGoogle Scholar
  49. Hallberg E, Andersson M, Nilsson D-E (1980a) Responses of the screening pigment in the compound eye of Neomysis integer (Crustacea: Mysidacea). J Exp Zool 212:397–402.CrossRefGoogle Scholar
  50. Hallberg E, Nilsson HL, Elofsson R (1980b) Classification of amphipod compound eyes — the fine structure of the ommatidial units (Crustacea, Amphipoda). Zoomorphologie 94:279–306.CrossRefGoogle Scholar
  51. Hardie RC (1985) Functional organization of the fly retina. Progr Sens Physiol 5:1–79.CrossRefGoogle Scholar
  52. Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neuro Sci 9:419–423.CrossRefGoogle Scholar
  53. Hariyama T, Meyer-Rochow VB, Eguchi E (1986) Diurnal changes in structure and function of the compound eye of Ligia exotica (Crustacea, Isopoda). J Exp Biol 123:1–26.Google Scholar
  54. Hateren JH van (1984) Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors. J Comp Physiol A 154:761–771.CrossRefGoogle Scholar
  55. Hateren JH van, Nilsson D-E (1987) Butterfly optics exceed the theoretical limits of conventional apposition eyes. Biol Cybernet 57:159–168.CrossRefGoogle Scholar
  56. Hausen K (1973) Die Brechungsindices im Kristallkegel der Mehlmotte Ephestia kühniella. J Comp Physiol 82:365–378.CrossRefGoogle Scholar
  57. Hesse R (1901) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. VII. Von den Arthropoden-Augen. Z Wiss Zool 70:347–473.Google Scholar
  58. Hodierna DG (1644) L’occhio della mosca. Decio Cirillo, Palermo.Google Scholar
  59. Home EM (1976) The fine structure of some carabid beetle eyes, with particular reference to ciliary structures in the retinula cells. Tissue Cell 8:311–333.PubMedCrossRefGoogle Scholar
  60. Hooke R (1665) Micrographia or some physiological descriptions of minute bodies made by magnifying glasses. Martin & Allestry, London.Google Scholar
  61. Horridge GA (1968) Pigment movement and the crystalline threads of the firefly eye. Nature (London) 218:778–779.CrossRefGoogle Scholar
  62. Horridge GA (1969) The eye of Dytiscus (Coleoptera). Tissue Cell 1:425–442.PubMedCrossRefGoogle Scholar
  63. Horridge GA (1972) Further observations on the clear zone eye of Ephestia. Proc R Soc London Ser B 181:157–173.CrossRefGoogle Scholar
  64. Horridge GA (ed) (1975) Optical mechanisms of clear zone eyes. In: The compound eye and vision of insects. Oxford Univ Press, pp 295-298.Google Scholar
  65. Horridge GA (1976) The ommatidium of the dorsal eye of Cloeon as a specialization tor photore-isomerization. Proc R Soc London Ser B 193:17–29.CrossRefGoogle Scholar
  66. Horridge GA, Barnard PBT (1965) Movement of palisade in locust retinula cells when illuminated. Q J Microsc Sci 106:131–135.PubMedGoogle Scholar
  67. Horridge GA, Giddings C (1971) The retina of Ephestia (Lepidoptera). Proc R Soc London Ser B 179:87–95.CrossRefGoogle Scholar
  68. Horridge GA, Henderson I (1976) The ommatidium of the lacewing Chrysopa (Neuroptera). Proc R Soc London Ser B 192:259–271.CrossRefGoogle Scholar
  69. Horridge GA, Giddings C, Stange G (1972) The superposition eye of skipper butterflies. Proc R Soc London Ser B 182:457–495.CrossRefGoogle Scholar
  70. Horridge GA, McLean M, Stange G, Lillywhite PG (1977) A diurnal moth superposition eye with high resolution Phalaenoides tristifica (Agaristidae). Proc R Soc London Ser B 196:233–250.CrossRefGoogle Scholar
  71. Horridge GA, Duniec J, Marçelja L (1981) A 24-hour cycle in single locust and mantis photoreceptors. J Exp Biol 91:307–322.Google Scholar
  72. Horridge GA, Marçelja L, Jahnke R (1982) Light guides in the dorsal eye of the male mayfly. Proc R Soc London Ser B 216:25–51.CrossRefGoogle Scholar
  73. Ioannides AC, Horroidge GA (1975) The organization of visual fields in the hemipteran acone eye. Proc R Soc London Ser B 190:373–391.CrossRefGoogle Scholar
  74. Kampa EM (1963) The structure of the eye of a galatheid crustacean, Pleuroncodes planipes. Crustaceana 6:69–80.CrossRefGoogle Scholar
  75. Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp Brain Res 3:248–270.PubMedCrossRefGoogle Scholar
  76. Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6:13–22.PubMedCrossRefGoogle Scholar
  77. Kuiper JW (1962) The optics of the compound eye. Symp Soc Exp Biol 16:58–71.Google Scholar
  78. Kunze P (1969) Eye glow in the moth and superposition theory. Nature (London) 223:1172–1174.CrossRefGoogle Scholar
  79. Kunze P (1970) Verhaltensphysiologische und optische Experimente zur Superpositionstheorie der Bildentstehung in Komplexaugen. Verh Dtsch Zool Ges 64:234–238.Google Scholar
  80. Kunze P (1972) Comparative studies of arthropod superposition eyes. Z Vergl Physiol 76:347–357.CrossRefGoogle Scholar
  81. Kunze P (1979) Apposition and superposition eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 441–502.Google Scholar
  82. Kunze P, Hausen K (1972) Inhomogeneous refractive index in the crystalline cone of a moth eye. Nature (London) 231:392–393.CrossRefGoogle Scholar
  83. Kuster JE (1979) Comparative structure of compound eyes of Cicindelidae and Carabidae (Coleoptera): evolution of scotopy and photopy. Quaest Entomol 15:297–334.Google Scholar
  84. Land MF (1976) Superposition images are formed by reflection in the eyes of some oceanic decapod crustacea. Nature (London) 263:764–765.CrossRefGoogle Scholar
  85. Land MF (1981a) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 471–592.Google Scholar
  86. Land MF (1981b) Optics of the eyes of Phronima and other deep-sea amphipods. J Comp Physiol A 145:209–226.CrossRefGoogle Scholar
  87. Land MF (1981c) Optical mechanisms in the higher Crustacea with a comment on their evolutionary origins. In: Laverack MS, Cosens DJ (eds) Sense organs. Blackie, Glasgow, pp 31–48.Google Scholar
  88. Land MF (1984) The resolving power of diurnal superposition eyes measured with an ophthalmoscope. J Comp Physiol A 154:515–533.CrossRefGoogle Scholar
  89. Land MF (1985) The eye: optics. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology. Pergamon Press, Oxford New York, pp 225–275.Google Scholar
  90. Land MF, Burton FA (1979) The refractive index gradient in the crystalline cones of the eyes of a euphausiid crustacean. J Exp Biol 82:395–398.Google Scholar
  91. Land MF, Burton FA, Meyer-Rochow VB (1979) The optical geometry of euphausiid eyes. J Comp Physiol A 130:49–62.CrossRefGoogle Scholar
  92. Leydig F (1855) Zum feineren Bau der Arthropoden. Müller’s Arch Anat Physiol 22:406–444.Google Scholar
  93. Leydig F (1864) Das Auge der Gliedertiere. Tübinger Universitätsschr, Tübingen.Google Scholar
  94. Mallock A (1894) Insect sight and the defining power of composite eyes. Proc R Soc London Ser B 55:85–90.CrossRefGoogle Scholar
  95. McIntyre P, Caveney S (1985) Graded-index optics are matched to optical geometry in the superposition eyes of scarab beetles. Philos Trans R Soc London Ser B 311:237–269.CrossRefGoogle Scholar
  96. McLean M, Horridge GA (1977) Structural changes in light-and dark-adapted compound eyes of the Australian earwig Labidura riparia truncala (Dermaptera). Tissue Cell 9:653–666.PubMedCrossRefGoogle Scholar
  97. Meinecke CC (1981) The fine structure of the compound eye of the African armyworm moth, Spodoptera exempta Walk. (Lepidoptera, Noctuidae). Cell Tissue Res 216:333–347.PubMedCrossRefGoogle Scholar
  98. Menzi U (1987) Visual adaptation in nocturnal and diurnal ants. J Comp Physiol A 160:11–22.CrossRefGoogle Scholar
  99. Meyer-Rochow VB, Waldvogel H (1979) Visual behaviour and the structure of dark and light-adapted larval and adult eyes of the New Zealand glowworm Arachnocampa luminosa (Mycetophilidae: Diptera). J Insect Physiol 25:601–613.CrossRefGoogle Scholar
  100. Meyer-Rochow VB, Walsh S (1978) The eyes of mesopelagic crustaceans: III. Thysanopoda tricuspidata (Euphausiacea). Cell Tissue Res 195:59–79.PubMedCrossRefGoogle Scholar
  101. Miller WH, Bernard GD, Allen JL (1968) The optics of insect compound eyes. Science 162:760–767.PubMedCrossRefGoogle Scholar
  102. Miltz O (1899) Das Auge der Polyphemiden. Zoologica (Stuttgart) 28:1–61.Google Scholar
  103. Müller J (1826) Zur vergleichenden Physiologie des Gesichtsinnes. Cnobloch, Leipzig.Google Scholar
  104. Nässel DR, Waterman TH (1979) Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J Comp Physiol A 131:205–216.CrossRefGoogle Scholar
  105. Nilsson D-E (1982) The transparent compound eye of Hyperia (Crustacea): Examination with a new method for analysis of refractive index gradients. J Comp Physiol A 147:339–349.CrossRefGoogle Scholar
  106. Nilsson D-E (1983a) Evolutionary links between apposition and superposition optics in crustacean eyes. Nature (London) 302:818–821.CrossRefGoogle Scholar
  107. Nilsson D-E (1983b) Refractive index gradients subserve optical isolation in a light-adapted reflecting superposition eye. J Exp Zool 225:161–165.CrossRefGoogle Scholar
  108. Nilsson D-E (1988) A new type of imaging optics in compound eyes. Nature (London) 332:76–78.CrossRefGoogle Scholar
  109. Nilsson D-E, Nilsson HL (1981) A crustacean compound eye adapted for low light intensities (Isopoda). J Comp Physiol A 143:503–510.CrossRefGoogle Scholar
  110. Nilsson D-E, Nilsson HL (1983) Eye camouflage in the isopod crustacean Astacilla longicornis (Sowerby). J Exp Mar Biol Ecol 68:105–110.CrossRefGoogle Scholar
  111. Nilsson D-E, Odselius R (1981) Anew mechanism for light-dark adaptation in the A rtemmia compound eye (Anostraca, Crustacea). J Comp Physiol A 143:389–399.CrossRefGoogle Scholar
  112. Nilsson D-E, Odselius R (1983) Regionally different optical systems in the compound eye of the water-flea Polyphemus (Cladocera, Crustacea). Proc R Soc London Ser B 217:163–175.CrossRefGoogle Scholar
  113. Nilsson D-E, Odselius R, Elofsson R (1983a) The compound eye of Leptodora kindtii (Cladocera): An adaptation to planktonic life. Cell Tissue Res 230:401–410.PubMedCrossRefGoogle Scholar
  114. Nilsson D-E, Andersson M, Hallberg E, Mclntyre P (1983b) A micro-interferometric method for analysis of rotation-symmetric refractive-index gradients in intact objects. J Microsc 132:21–29.CrossRefGoogle Scholar
  115. Nilsson D-E, Land MF, Howard J (1984) Afocal apposition optics in butterfly eyes. Nature (London) 312:561–563.CrossRefGoogle Scholar
  116. Nilsson D-E, Hallberg E, Elofsson R (1986) The ontogenetic development of refracting superposition eyes in crustaceans: Transformation of optical design. Tissue Cell 18:509–519.PubMedCrossRefGoogle Scholar
  117. Nilsson D-E, Land MF, Howard J (1988) Optics of the butterfly eye. J Comp Physiol A 162:341–366.CrossRefGoogle Scholar
  118. Parker (1891) The compound eyes in crustaceans. Bull Mus Comp Zool 21:45–140.Google Scholar
  119. Pask C, Barrell KF (1980a) Photoreceptor optics I: Introduction to formalism and excitation in a lens-photoreceptor system. Biol Cybernet 36:1–8.CrossRefGoogle Scholar
  120. Pask C, Barrell KF (1980b) Photoreceptor optics II: Application to angular sensitivity and other properties of a lens-photoreceptor system. Biol Cybernet 36:9–18.CrossRefGoogle Scholar
  121. Patten W (1886) Eyes of molluscs and arthropods. Mitt Zool Stn Neapel VI: 542–756.Google Scholar
  122. Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 299–383.Google Scholar
  123. Ribi WA (1978) Ultrastructure and migration of screening pigments in the retina of Pieris rapae L. (Lepidoptera, Pieridae). Cell Tissue Res 191:57–73.PubMedCrossRefGoogle Scholar
  124. Rossel S (1979) Regional differences in photoreceptor performance in the eye of the praying mantis. J Comp Physiol A 131:95–112.CrossRefGoogle Scholar
  125. Salvini-Plawen L v, Mayr E (1977) On the evolution of photoreceptors and eyes. In: Hecht MK, Sterre WC, Wallace B (eds) Evolutionary biology, vol 10. Plenum, New York, pp 207–263.Google Scholar
  126. Schmitt M, Mischke U, Wachmann E (1982) Phylogenetic and functional implications of the rhabdom patterns in the eyes of Chrysomeloidea (Coleoptera). Zool Scr 11:31–44.CrossRefGoogle Scholar
  127. Schneider L, Langer H (1969) Die Struktur des Rhabdoms im “Doppelauge” des Wasserläufers Gerris lacustris. Z Zellforsch 99:538–559.PubMedCrossRefGoogle Scholar
  128. Schneider L, Gogala M, Draslar K, Langer H, Schlecht P (1978) Feinstruktur und Schirmpigment-Eigenschaften der Ommatidien des Doppelauges von Ascalaphus (Insecta, Neuroptera). Cytobiology 16:274–307.Google Scholar
  129. Schultze M (1868) Untersuchungen über die zusammengesezten Augen der Krebse und Insekten. Cohen, Bonn.Google Scholar
  130. Seitz G (1969) Untersuchungen am dioptrischen Apparat des Leuchtkäferauges. Z Vergl Physiol 62:61–74.CrossRefGoogle Scholar
  131. Seitz G (1971) Bau und Funktion des Komplexauges der Schmeißfliege. Naturwissenschaften 58:258–265.PubMedCrossRefGoogle Scholar
  132. Snyder AW (1975) Photoreceptor optics — theoretical principles. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 38–55.CrossRefGoogle Scholar
  133. Snyder AW (1977) Acuity of compound eyes: physical limitations and design. J Comp Physiol A 116:161–182.CrossRefGoogle Scholar
  134. Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 225–313.Google Scholar
  135. Stavenga DG (1974a) Refractive index of fly rhabdomeres J Comp Physiol A 91:417–426.CrossRefGoogle Scholar
  136. Stavenga DG (1974b) Waveguide modes and refractive index in photoreceptors of invertebrates. Vision Res 15:323–330.CrossRefGoogle Scholar
  137. Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg, New York, pp 357–439.Google Scholar
  138. Stavenga DG, Kuiper JW (1977) Insect pupil mechanisms I. On the pigment migration in the retinula cells of Hymenoptera (Suborder Apocrita). J Comp Physiol A 113:55–72.CrossRefGoogle Scholar
  139. Stavenga DG, Numan JAJ, Tinbergen J, Kuiper JW (1977) Insect pupil mechanisms II. Pigment migration in retinula cells of butterflies. J Comp Physiol A 113:73–93.CrossRefGoogle Scholar
  140. Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York.Google Scholar
  141. Swammerdam J (1737) Bibia Naturae sive Historia Insectorum. Boerhaave H (ed) Severinus, Leyden.Google Scholar
  142. Vigier P (1907) Sur la reception de l’exitant lumineux dans les yeux composés des insectes, en particulier chez les muscides. C R Acad Sci Paris 63:633–636.Google Scholar
  143. Vigier P (1909) Mécanisme de la synthèse des impressions lumineuses par les yeux composés des Diptères. C R Acad Sci Paris 148:1221–1223.Google Scholar
  144. Vogt K (1975) Zur Optik des Flußkrebsauges. Z naturforsch 30:691.Google Scholar
  145. Vogt K (1977) Ray path and reflection mechanisms in crayfish eyes. Z Naturforsch 32:466–468.Google Scholar
  146. Vogt K (1980) Die Spiegeloptick des Flußkrebsauges. J Comp Physiol A 135:1–19.CrossRefGoogle Scholar
  147. Wachmann E (1977) Vergleichende Analyse der feinstrukturellen Organisation offener Rhabdome in den Augen der Cucujiformia (Insecta, Coleoptera), unter besonderer Berücksichtigung der Chrysomelidae. Zoomorphologie 88:95–131.CrossRefGoogle Scholar
  148. Wachmann E (1979) Untersuchungen zur Feinstruktur der Augen von Bockkäfern (Coleoptera, Cerambycidae). Zoomorphologie 92:19–48.CrossRefGoogle Scholar
  149. Walcott B (1971) Cell movement on light adaptation in the retina of Lethocerus (Belostomatidae, Hemiptera). Z Vergl Physiol 74:1–16.CrossRefGoogle Scholar
  150. Walcott B (1975) Anatomical changes during light adaptation in insect compound eyes. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 20–36.Google Scholar
  151. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–616.Google Scholar
  152. Welsch B (1977) Ultrastruktur und funktionelle Morphologie der Augen des Nachtfalters Deilephila elpenor (Lepidoptera, Sphingidae). Cytobiology 14:378–400.Google Scholar
  153. Welsh JH, Chace FA (1937) Eyes of deep sea crustaceans. I Acanthephyridae. Biol Bull 72:57–74.CrossRefGoogle Scholar
  154. Williams DS (1980) Organisation of the compound eye of a tipulid fly during the day and night. Zoomorphologie 95:85–104.CrossRefGoogle Scholar
  155. Williams DS (1982) Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res 225:595–617.PubMedCrossRefGoogle Scholar
  156. Wolburg-Buchholz K (1976) The dorsal eye of Cloëon dipterum (Ephemeroptera): A light and electronmicroscopical study. Z Naturforsch 31c:335–336.Google Scholar
  157. Young S, Downing AC (1976) The receptive fields of Daphnia ommatidia. J Exp Biol 64:185–202.PubMedGoogle Scholar
  158. Zeil J (1979) A new kind of neural superposition eye: the compound eye of male Bibionidae. Nature (London) 278:249–250.CrossRefGoogle Scholar
  159. Zeil J (1983) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). J Comp Physiol A 150:379–393.CrossRefGoogle Scholar
  160. Zharkova IS (1975) Reduction of organs of sight in deep-water Isopoda, Amphipoda and Decapoda. Zool Zh 54:200–208.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Dan-Eric Nilsson
    • 1
  1. 1.LundSweden

Personalised recommendations