Skip to main content

Optics and Evolution of the Compound Eye

  • Conference paper
Book cover Facets of Vision

Abstract

During the last 100 years, the number of known optical types of compound eye has grown from one to at least seven. With this increasing knowledge we have learned That there are many ways to construct image-forming optical systems and the similarity of compound eyes of different animals is indeed only superficial The radicallydifferentopticalsystemsfound in theeyes of closelyrelatedgroupsof both insects and crustaceans present a serious problem concerning the evolution of optical mechanisms: some compound eyes form multiple inverted images whereas others form a single erect image. The problem arises from the fact that hypothetical intermediate designs may seem nonfunctional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum H (ed) (1981) Light and dark adaptation in invertebrates. In: Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 1–91.

    Google Scholar 

  • Autrum H, Wiedemann I (1962) Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z Naturforsch 17:480–482.

    Google Scholar 

  • Ball EE (1977) Fine structure of the compound eyes of the midwater amphipod Phronima in relation to behaviour and habitat. Tissue Cell 9:521–536.

    Article  PubMed  CAS  Google Scholar 

  • Ball EE, Kao LC, Stone RC, Land MF (1986) Eye structure and optics in the pelagic shrimp Acetes sibogae (Decapoda, Natantia, Sergestidae) in relation to light-dark adaptation and natural history. Philos Trans R Soc London Ser B 313:251–270.

    Article  Google Scholar 

  • Barlow HB (1952) The size of ommatidia in apposition eyes. J Exp Biol 29:667–674.

    Google Scholar 

  • Beersma DGM, Hoenders BJ, Huiser AMJ, Toorn P van (1982) Refractive index of the fly rhabdomere. J Opt Soc Am 72:583–588.

    Article  PubMed  CAS  Google Scholar 

  • Behrens ME (1974) Photomechanical changes in the ommatidia of the Limulus lateral eye during light and dark adaptation. J Comp Physiol 89:45–57.

    Article  Google Scholar 

  • Bernhard CG (ed) (1966) Opening address. In: The functional organization of the compound eye. Pergamon, Oxford New York, pp. 1–11.

    Google Scholar 

  • Boll F (1871) Beiträge zur physiologischen Optik. Arch Anat Physiol Wiss Med 1:530–549.

    Google Scholar 

  • Brammer JD (1970) The ultrastructure of the compound eye of a mosquito A edes aegypti L. J Exp Zool 175:181–196.

    Article  Google Scholar 

  • Bryceson KP (1981) Focusing of light by corneal lenses in a reflecting superposition eye. J Exp Biol 90:347–350.

    Google Scholar 

  • Bryceson KP, Mclntyre P (1983) Image quality and acceptance angle in a reflecting superposition eye. J Comp Physiol A 151:367–380.

    Article  Google Scholar 

  • Burghause F (1976) Adaptationserscheinungen in den Komplexaugen von Gyrinus natator L. (Coleoptera: Gyrinidae). Int J Insect Morphol Embryol 5:335–348.

    Article  Google Scholar 

  • Bursey CR (1975) The microanatomy of the compound eye of Munida irrasa (Decapoda: Galatheidae). Cell Tissue Res 160:505–514.

    Article  PubMed  CAS  Google Scholar 

  • Burton PR, Stockhammer KA (1969) Electron microscopic studies of the compound eye of the toadbug, Gelastocoris oeulatus. J Morphol 127:233–258.

    Article  Google Scholar 

  • Burtt ET, Catton WT (1961) Is the mosaic theory of insect vision true? Int Congr Entanol 11:670–673.

    Google Scholar 

  • Burtt ET, Catton WT (1966) The role of diffraction in compound eye vision. In: Bernhard CG (ed) The functional organization of the compound eye. Pergamon, Oxford New York, pp 63–76.

    Google Scholar 

  • Caveney S (1986) The phylogenetic significance of ommatidium structure in the compound eyes of polyphagan beetles. Can J Zool 64:1787–1819.

    Article  Google Scholar 

  • Caveney S, Mclntyre P (1981) Design of graded-index lenses in the superposition eyes of scarab beetles. Phil Trans R Soc London Ser B 294:589–635.

    Article  Google Scholar 

  • Chu H, Norris DM, Carlson SD (1975) Ultrastructure of the compound eye of the diploid female beetle, Xyleborus ferrugineus. Cell Tissue Res 165:23–26.

    Article  PubMed  CAS  Google Scholar 

  • Chun C (1896) Leuchtorgane und Facettenaugen. Bibl Zool 19:191–262.

    Google Scholar 

  • Cleary P, Deichsel G, Kunze P (1977) The superposition image in the eye of Ephestia kühniella. J Comp Physiol A 119:73–84.

    Article  Google Scholar 

  • Cronin TW (1986) Optical design and evolutionary adaptation in crustacean eyes. J Crustacean Biol 6:1–23.

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Oxford Univ Press.

    Google Scholar 

  • Debaisieux P (1944) Les yeux des Crustacés: structure, développement, réactions à l’éclairement. Cellule 50:9–122.

    Google Scholar 

  • Demoli R (1917) Die Sinnesorgane der Arthropoden, ihr Bau und ihre Funktion. Vieweg, Braunschweig.

    Google Scholar 

  • Denys CJ, Adamian M, Brown PK (1983) Ultrastructure of eye of a euphausiid crustacean. Tissue Cell 15:77–95.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich W (1909) Die Facettenaugen der Dipteren Z Wiss Zool 92:465–539.

    Google Scholar 

  • Døving KB, Miller WH (1969) Function of insect compound eyes containing crystalline tracts. J Gen Physiol 54:250–267.

    Article  PubMed  Google Scholar 

  • Edwards AS (1969) The structure of the eye of the Ligia oceanica L. Tissue Cell 1:217–228.

    Article  PubMed  CAS  Google Scholar 

  • Elofsson R, Hallberg E (1977) Compound eyes of some deep-sea and fiord mysid crustaceans. Acta Zool (Stockholm) 58:169–177.

    Article  Google Scholar 

  • Elofsson R, Hallberg E, Nilsson HL (1980) The juxtaposed compound eye and organ of Bellonci in Haploops tubicola (Crustacea: Amphipoda) — The fine structure of the organ of Bellonci. Zoomorphologie 96:255–262.

    Article  Google Scholar 

  • Eltringham H (1933) The senses of insects. Methuen’s Biol Monogr, London.

    Google Scholar 

  • Exner S (1876) Uber das Sehen von Bewegungen und die Theorie des zusammengesetzten Auges. Sitz Ber Kaiserl Akad Wiss Math Nat Wiss 72:156–191.

    Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Deuticke, Leipzig Wien.

    Book  Google Scholar 

  • Fahrenbach WH (1975) The visual system of the horseshoe crab Limulus polyphemus. Int Rev Cytol 41:285–349.

    Article  PubMed  CAS  Google Scholar 

  • Fincham AA (1980) Eyes and classification of malacostracan crustaceans. Nature (London) 287:729–731.

    Article  Google Scholar 

  • Fincham AA (1984) Ontogeny and optics of the eyes of the common prawn Palaemon (Palaemon) serratus (Pennant, 1777). Zool J Linnean Soc 81:89–113.

    Article  Google Scholar 

  • Fischer A, Horstmann G (1971) Der Feinbau des Auges der Mehlmotte, Ephestia kühniella Zeller (Lepidoptera, Pyralididae). Z Zellforsch 116:275–304.

    Article  PubMed  CAS  Google Scholar 

  • Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 97–125.

    Google Scholar 

  • Gokan N, Hosobuchi K (1979a) Fine structure of the compound eyes of the longicorn beetles (Coleoptera: Cerambycidae). Appl Entomol Zool 14:12–27.

    Google Scholar 

  • Gokan N, Hosobuchi K (1979b) Ultrastructure of the compound eye of the Longicorn beetle, Prionus insularis Motschulsky (Coleoptera: Cerambycidae). Kontyû 47:105–116.

    Google Scholar 

  • Gotische A (1852) Beitrag zur Anatomie und Physiologie des Auges der Krebse und Fliegen. Arch Anat Physiol Wiss Med 483-492.

    Google Scholar 

  • Grenacher H (1877) Untersuchungen über das Arthropodenauge. Beil Klin Monatsbl Augenheilkd 15.

    Google Scholar 

  • Grenacher H (1879) Untersuchungen über das Sehorgan der Arthropoden, inbesondere der Spinnen, Insecten und Crustaceen. Vandenhoek & Ruprecht, Göttingen.

    Google Scholar 

  • Grüel C (1844) Mikroskopische Beobachtungen. Ann Phys Chem 61:220–222.

    Article  Google Scholar 

  • Hallberg E (1977) The fine structure of the compound eyes of mysids (Crustacea: Mysidacea). Cell Tissue Res 184:45–65.

    Article  PubMed  CAS  Google Scholar 

  • Hallberg E, Nilsson D-E (1983) The euphausiid (Crustacea: Euphausiacea) compound eye — a morphological re-investigation. Zoomorphology 103:59–66.

    Article  Google Scholar 

  • Hallberg E, Andersson M, Nilsson D-E (1980a) Responses of the screening pigment in the compound eye of Neomysis integer (Crustacea: Mysidacea). J Exp Zool 212:397–402.

    Article  Google Scholar 

  • Hallberg E, Nilsson HL, Elofsson R (1980b) Classification of amphipod compound eyes — the fine structure of the ommatidial units (Crustacea, Amphipoda). Zoomorphologie 94:279–306.

    Article  Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. Progr Sens Physiol 5:1–79.

    Article  Google Scholar 

  • Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neuro Sci 9:419–423.

    Article  Google Scholar 

  • Hariyama T, Meyer-Rochow VB, Eguchi E (1986) Diurnal changes in structure and function of the compound eye of Ligia exotica (Crustacea, Isopoda). J Exp Biol 123:1–26.

    Google Scholar 

  • Hateren JH van (1984) Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors. J Comp Physiol A 154:761–771.

    Article  Google Scholar 

  • Hateren JH van, Nilsson D-E (1987) Butterfly optics exceed the theoretical limits of conventional apposition eyes. Biol Cybernet 57:159–168.

    Article  Google Scholar 

  • Hausen K (1973) Die Brechungsindices im Kristallkegel der Mehlmotte Ephestia kühniella. J Comp Physiol 82:365–378.

    Article  Google Scholar 

  • Hesse R (1901) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. VII. Von den Arthropoden-Augen. Z Wiss Zool 70:347–473.

    Google Scholar 

  • Hodierna DG (1644) L’occhio della mosca. Decio Cirillo, Palermo.

    Google Scholar 

  • Home EM (1976) The fine structure of some carabid beetle eyes, with particular reference to ciliary structures in the retinula cells. Tissue Cell 8:311–333.

    Article  PubMed  CAS  Google Scholar 

  • Hooke R (1665) Micrographia or some physiological descriptions of minute bodies made by magnifying glasses. Martin & Allestry, London.

    Google Scholar 

  • Horridge GA (1968) Pigment movement and the crystalline threads of the firefly eye. Nature (London) 218:778–779.

    Article  CAS  Google Scholar 

  • Horridge GA (1969) The eye of Dytiscus (Coleoptera). Tissue Cell 1:425–442.

    Article  PubMed  CAS  Google Scholar 

  • Horridge GA (1972) Further observations on the clear zone eye of Ephestia. Proc R Soc London Ser B 181:157–173.

    Article  Google Scholar 

  • Horridge GA (ed) (1975) Optical mechanisms of clear zone eyes. In: The compound eye and vision of insects. Oxford Univ Press, pp 295-298.

    Google Scholar 

  • Horridge GA (1976) The ommatidium of the dorsal eye of Cloeon as a specialization tor photore-isomerization. Proc R Soc London Ser B 193:17–29.

    Article  CAS  Google Scholar 

  • Horridge GA, Barnard PBT (1965) Movement of palisade in locust retinula cells when illuminated. Q J Microsc Sci 106:131–135.

    PubMed  CAS  Google Scholar 

  • Horridge GA, Giddings C (1971) The retina of Ephestia (Lepidoptera). Proc R Soc London Ser B 179:87–95.

    Article  Google Scholar 

  • Horridge GA, Henderson I (1976) The ommatidium of the lacewing Chrysopa (Neuroptera). Proc R Soc London Ser B 192:259–271.

    Article  CAS  Google Scholar 

  • Horridge GA, Giddings C, Stange G (1972) The superposition eye of skipper butterflies. Proc R Soc London Ser B 182:457–495.

    Article  Google Scholar 

  • Horridge GA, McLean M, Stange G, Lillywhite PG (1977) A diurnal moth superposition eye with high resolution Phalaenoides tristifica (Agaristidae). Proc R Soc London Ser B 196:233–250.

    Article  CAS  Google Scholar 

  • Horridge GA, Duniec J, Marçelja L (1981) A 24-hour cycle in single locust and mantis photoreceptors. J Exp Biol 91:307–322.

    Google Scholar 

  • Horridge GA, Marçelja L, Jahnke R (1982) Light guides in the dorsal eye of the male mayfly. Proc R Soc London Ser B 216:25–51.

    Article  Google Scholar 

  • Ioannides AC, Horroidge GA (1975) The organization of visual fields in the hemipteran acone eye. Proc R Soc London Ser B 190:373–391.

    Article  CAS  Google Scholar 

  • Kampa EM (1963) The structure of the eye of a galatheid crustacean, Pleuroncodes planipes. Crustaceana 6:69–80.

    Article  Google Scholar 

  • Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp Brain Res 3:248–270.

    Article  PubMed  CAS  Google Scholar 

  • Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper JW (1962) The optics of the compound eye. Symp Soc Exp Biol 16:58–71.

    Google Scholar 

  • Kunze P (1969) Eye glow in the moth and superposition theory. Nature (London) 223:1172–1174.

    Article  Google Scholar 

  • Kunze P (1970) Verhaltensphysiologische und optische Experimente zur Superpositionstheorie der Bildentstehung in Komplexaugen. Verh Dtsch Zool Ges 64:234–238.

    Google Scholar 

  • Kunze P (1972) Comparative studies of arthropod superposition eyes. Z Vergl Physiol 76:347–357.

    Article  Google Scholar 

  • Kunze P (1979) Apposition and superposition eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 441–502.

    Google Scholar 

  • Kunze P, Hausen K (1972) Inhomogeneous refractive index in the crystalline cone of a moth eye. Nature (London) 231:392–393.

    Article  Google Scholar 

  • Kuster JE (1979) Comparative structure of compound eyes of Cicindelidae and Carabidae (Coleoptera): evolution of scotopy and photopy. Quaest Entomol 15:297–334.

    Google Scholar 

  • Land MF (1976) Superposition images are formed by reflection in the eyes of some oceanic decapod crustacea. Nature (London) 263:764–765.

    Article  CAS  Google Scholar 

  • Land MF (1981a) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 471–592.

    Google Scholar 

  • Land MF (1981b) Optics of the eyes of Phronima and other deep-sea amphipods. J Comp Physiol A 145:209–226.

    Article  Google Scholar 

  • Land MF (1981c) Optical mechanisms in the higher Crustacea with a comment on their evolutionary origins. In: Laverack MS, Cosens DJ (eds) Sense organs. Blackie, Glasgow, pp 31–48.

    Google Scholar 

  • Land MF (1984) The resolving power of diurnal superposition eyes measured with an ophthalmoscope. J Comp Physiol A 154:515–533.

    Article  Google Scholar 

  • Land MF (1985) The eye: optics. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology. Pergamon Press, Oxford New York, pp 225–275.

    Google Scholar 

  • Land MF, Burton FA (1979) The refractive index gradient in the crystalline cones of the eyes of a euphausiid crustacean. J Exp Biol 82:395–398.

    Google Scholar 

  • Land MF, Burton FA, Meyer-Rochow VB (1979) The optical geometry of euphausiid eyes. J Comp Physiol A 130:49–62.

    Article  Google Scholar 

  • Leydig F (1855) Zum feineren Bau der Arthropoden. Müller’s Arch Anat Physiol 22:406–444.

    Google Scholar 

  • Leydig F (1864) Das Auge der Gliedertiere. Tübinger Universitätsschr, Tübingen.

    Google Scholar 

  • Mallock A (1894) Insect sight and the defining power of composite eyes. Proc R Soc London Ser B 55:85–90.

    Article  Google Scholar 

  • McIntyre P, Caveney S (1985) Graded-index optics are matched to optical geometry in the superposition eyes of scarab beetles. Philos Trans R Soc London Ser B 311:237–269.

    Article  Google Scholar 

  • McLean M, Horridge GA (1977) Structural changes in light-and dark-adapted compound eyes of the Australian earwig Labidura riparia truncala (Dermaptera). Tissue Cell 9:653–666.

    Article  PubMed  CAS  Google Scholar 

  • Meinecke CC (1981) The fine structure of the compound eye of the African armyworm moth, Spodoptera exempta Walk. (Lepidoptera, Noctuidae). Cell Tissue Res 216:333–347.

    Article  PubMed  CAS  Google Scholar 

  • Menzi U (1987) Visual adaptation in nocturnal and diurnal ants. J Comp Physiol A 160:11–22.

    Article  Google Scholar 

  • Meyer-Rochow VB, Waldvogel H (1979) Visual behaviour and the structure of dark and light-adapted larval and adult eyes of the New Zealand glowworm Arachnocampa luminosa (Mycetophilidae: Diptera). J Insect Physiol 25:601–613.

    Article  Google Scholar 

  • Meyer-Rochow VB, Walsh S (1978) The eyes of mesopelagic crustaceans: III. Thysanopoda tricuspidata (Euphausiacea). Cell Tissue Res 195:59–79.

    Article  PubMed  CAS  Google Scholar 

  • Miller WH, Bernard GD, Allen JL (1968) The optics of insect compound eyes. Science 162:760–767.

    Article  PubMed  CAS  Google Scholar 

  • Miltz O (1899) Das Auge der Polyphemiden. Zoologica (Stuttgart) 28:1–61.

    Google Scholar 

  • Müller J (1826) Zur vergleichenden Physiologie des Gesichtsinnes. Cnobloch, Leipzig.

    Google Scholar 

  • Nässel DR, Waterman TH (1979) Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J Comp Physiol A 131:205–216.

    Article  Google Scholar 

  • Nilsson D-E (1982) The transparent compound eye of Hyperia (Crustacea): Examination with a new method for analysis of refractive index gradients. J Comp Physiol A 147:339–349.

    Article  Google Scholar 

  • Nilsson D-E (1983a) Evolutionary links between apposition and superposition optics in crustacean eyes. Nature (London) 302:818–821.

    Article  Google Scholar 

  • Nilsson D-E (1983b) Refractive index gradients subserve optical isolation in a light-adapted reflecting superposition eye. J Exp Zool 225:161–165.

    Article  Google Scholar 

  • Nilsson D-E (1988) A new type of imaging optics in compound eyes. Nature (London) 332:76–78.

    Article  Google Scholar 

  • Nilsson D-E, Nilsson HL (1981) A crustacean compound eye adapted for low light intensities (Isopoda). J Comp Physiol A 143:503–510.

    Article  Google Scholar 

  • Nilsson D-E, Nilsson HL (1983) Eye camouflage in the isopod crustacean Astacilla longicornis (Sowerby). J Exp Mar Biol Ecol 68:105–110.

    Article  Google Scholar 

  • Nilsson D-E, Odselius R (1981) Anew mechanism for light-dark adaptation in the A rtemmia compound eye (Anostraca, Crustacea). J Comp Physiol A 143:389–399.

    Article  Google Scholar 

  • Nilsson D-E, Odselius R (1983) Regionally different optical systems in the compound eye of the water-flea Polyphemus (Cladocera, Crustacea). Proc R Soc London Ser B 217:163–175.

    Article  Google Scholar 

  • Nilsson D-E, Odselius R, Elofsson R (1983a) The compound eye of Leptodora kindtii (Cladocera): An adaptation to planktonic life. Cell Tissue Res 230:401–410.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson D-E, Andersson M, Hallberg E, Mclntyre P (1983b) A micro-interferometric method for analysis of rotation-symmetric refractive-index gradients in intact objects. J Microsc 132:21–29.

    Article  Google Scholar 

  • Nilsson D-E, Land MF, Howard J (1984) Afocal apposition optics in butterfly eyes. Nature (London) 312:561–563.

    Article  Google Scholar 

  • Nilsson D-E, Hallberg E, Elofsson R (1986) The ontogenetic development of refracting superposition eyes in crustaceans: Transformation of optical design. Tissue Cell 18:509–519.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson D-E, Land MF, Howard J (1988) Optics of the butterfly eye. J Comp Physiol A 162:341–366.

    Article  Google Scholar 

  • Parker (1891) The compound eyes in crustaceans. Bull Mus Comp Zool 21:45–140.

    Google Scholar 

  • Pask C, Barrell KF (1980a) Photoreceptor optics I: Introduction to formalism and excitation in a lens-photoreceptor system. Biol Cybernet 36:1–8.

    Article  CAS  Google Scholar 

  • Pask C, Barrell KF (1980b) Photoreceptor optics II: Application to angular sensitivity and other properties of a lens-photoreceptor system. Biol Cybernet 36:9–18.

    Article  CAS  Google Scholar 

  • Patten W (1886) Eyes of molluscs and arthropods. Mitt Zool Stn Neapel VI: 542–756.

    Google Scholar 

  • Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 299–383.

    Google Scholar 

  • Ribi WA (1978) Ultrastructure and migration of screening pigments in the retina of Pieris rapae L. (Lepidoptera, Pieridae). Cell Tissue Res 191:57–73.

    Article  PubMed  CAS  Google Scholar 

  • Rossel S (1979) Regional differences in photoreceptor performance in the eye of the praying mantis. J Comp Physiol A 131:95–112.

    Article  Google Scholar 

  • Salvini-Plawen L v, Mayr E (1977) On the evolution of photoreceptors and eyes. In: Hecht MK, Sterre WC, Wallace B (eds) Evolutionary biology, vol 10. Plenum, New York, pp 207–263.

    Google Scholar 

  • Schmitt M, Mischke U, Wachmann E (1982) Phylogenetic and functional implications of the rhabdom patterns in the eyes of Chrysomeloidea (Coleoptera). Zool Scr 11:31–44.

    Article  Google Scholar 

  • Schneider L, Langer H (1969) Die Struktur des Rhabdoms im “Doppelauge” des Wasserläufers Gerris lacustris. Z Zellforsch 99:538–559.

    Article  PubMed  CAS  Google Scholar 

  • Schneider L, Gogala M, Draslar K, Langer H, Schlecht P (1978) Feinstruktur und Schirmpigment-Eigenschaften der Ommatidien des Doppelauges von Ascalaphus (Insecta, Neuroptera). Cytobiology 16:274–307.

    Google Scholar 

  • Schultze M (1868) Untersuchungen über die zusammengesezten Augen der Krebse und Insekten. Cohen, Bonn.

    Google Scholar 

  • Seitz G (1969) Untersuchungen am dioptrischen Apparat des Leuchtkäferauges. Z Vergl Physiol 62:61–74.

    Article  Google Scholar 

  • Seitz G (1971) Bau und Funktion des Komplexauges der Schmeißfliege. Naturwissenschaften 58:258–265.

    Article  PubMed  CAS  Google Scholar 

  • Snyder AW (1975) Photoreceptor optics — theoretical principles. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 38–55.

    Chapter  Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: physical limitations and design. J Comp Physiol A 116:161–182.

    Article  Google Scholar 

  • Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 225–313.

    Google Scholar 

  • Stavenga DG (1974a) Refractive index of fly rhabdomeres J Comp Physiol A 91:417–426.

    Article  Google Scholar 

  • Stavenga DG (1974b) Waveguide modes and refractive index in photoreceptors of invertebrates. Vision Res 15:323–330.

    Article  Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg, New York, pp 357–439.

    Google Scholar 

  • Stavenga DG, Kuiper JW (1977) Insect pupil mechanisms I. On the pigment migration in the retinula cells of Hymenoptera (Suborder Apocrita). J Comp Physiol A 113:55–72.

    Article  Google Scholar 

  • Stavenga DG, Numan JAJ, Tinbergen J, Kuiper JW (1977) Insect pupil mechanisms II. Pigment migration in retinula cells of butterflies. J Comp Physiol A 113:73–93.

    Article  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Swammerdam J (1737) Bibia Naturae sive Historia Insectorum. Boerhaave H (ed) Severinus, Leyden.

    Google Scholar 

  • Vigier P (1907) Sur la reception de l’exitant lumineux dans les yeux composés des insectes, en particulier chez les muscides. C R Acad Sci Paris 63:633–636.

    Google Scholar 

  • Vigier P (1909) Mécanisme de la synthèse des impressions lumineuses par les yeux composés des Diptères. C R Acad Sci Paris 148:1221–1223.

    Google Scholar 

  • Vogt K (1975) Zur Optik des Flußkrebsauges. Z naturforsch 30:691.

    CAS  Google Scholar 

  • Vogt K (1977) Ray path and reflection mechanisms in crayfish eyes. Z Naturforsch 32:466–468.

    Google Scholar 

  • Vogt K (1980) Die Spiegeloptick des Flußkrebsauges. J Comp Physiol A 135:1–19.

    Article  Google Scholar 

  • Wachmann E (1977) Vergleichende Analyse der feinstrukturellen Organisation offener Rhabdome in den Augen der Cucujiformia (Insecta, Coleoptera), unter besonderer Berücksichtigung der Chrysomelidae. Zoomorphologie 88:95–131.

    Article  Google Scholar 

  • Wachmann E (1979) Untersuchungen zur Feinstruktur der Augen von Bockkäfern (Coleoptera, Cerambycidae). Zoomorphologie 92:19–48.

    Article  Google Scholar 

  • Walcott B (1971) Cell movement on light adaptation in the retina of Lethocerus (Belostomatidae, Hemiptera). Z Vergl Physiol 74:1–16.

    Article  Google Scholar 

  • Walcott B (1975) Anatomical changes during light adaptation in insect compound eyes. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 20–36.

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–616.

    Google Scholar 

  • Welsch B (1977) Ultrastruktur und funktionelle Morphologie der Augen des Nachtfalters Deilephila elpenor (Lepidoptera, Sphingidae). Cytobiology 14:378–400.

    Google Scholar 

  • Welsh JH, Chace FA (1937) Eyes of deep sea crustaceans. I Acanthephyridae. Biol Bull 72:57–74.

    Article  Google Scholar 

  • Williams DS (1980) Organisation of the compound eye of a tipulid fly during the day and night. Zoomorphologie 95:85–104.

    Article  Google Scholar 

  • Williams DS (1982) Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res 225:595–617.

    Article  PubMed  CAS  Google Scholar 

  • Wolburg-Buchholz K (1976) The dorsal eye of Cloëon dipterum (Ephemeroptera): A light and electronmicroscopical study. Z Naturforsch 31c:335–336.

    Google Scholar 

  • Young S, Downing AC (1976) The receptive fields of Daphnia ommatidia. J Exp Biol 64:185–202.

    PubMed  CAS  Google Scholar 

  • Zeil J (1979) A new kind of neural superposition eye: the compound eye of male Bibionidae. Nature (London) 278:249–250.

    Article  Google Scholar 

  • Zeil J (1983) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). J Comp Physiol A 150:379–393.

    Article  Google Scholar 

  • Zharkova IS (1975) Reduction of organs of sight in deep-water Isopoda, Amphipoda and Decapoda. Zool Zh 54:200–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nilsson, DE. (1989). Optics and Evolution of the Compound Eye. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics