Polarization Sensitivity in Compound Eyes

  • Samuel Rossel

Abstract

The compound eyes of insects and many other arthropods can detect a basic property of light which normally remains invisible to us: the plane of polarization. Arising by scattering in air and water, as well as by reflection from surfaces (Fig. 1), linearly polarized light (characterized by the E-vector direction) is widespread in nature and provides the sensitive eye with a great deal of extra optical information. How polarized light is analyzed and used by arthropods is the theme of this chapter.

Keywords

Retina Xenon Bleach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum H, Stumpf H (1950) Das Bienenauge als Analysator für polarisiertes Licht. Z Naturforsch 5b:116–122.Google Scholar
  2. Blest AD, Stowe S, Eddey W (1982) A labile, Ca2+-dependent cytoskeleton in rhabdomeral microvilli of blowflies. Cell Tissue Res 223:553–573.PubMedCrossRefGoogle Scholar
  3. Bohn H. Täuber U (1971) Beziehungen zwischen der Wirkung polarisierten Lichtes auf das Elektro-retinogramm und der Ultrastruktur des Auges von Gerris lacustris. Z Vergl Physiol 72:32–53.CrossRefGoogle Scholar
  4. Brines LB, Gould JL (1979) Bees have rules. Science 206:571–573.PubMedCrossRefGoogle Scholar
  5. Brines LB, Gould JL (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96:69–91.Google Scholar
  6. Burghause FMHR (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jahrb Physiol 83:502–525.Google Scholar
  7. Burkhardt D, Wendler L (1960) Ein direkter Beweis für die Fähigkeit einzelner Sehzellen des Insektenauges, die Schwingungsrichtung polarisierten Lichtes zu analysieren. Z Vergl Physiol 43:687–692.CrossRefGoogle Scholar
  8. de Vries H, Spoor A, Jielof R (1953) Properties of the eye with respect to polarized light. Physica 19:419–432.CrossRefGoogle Scholar
  9. Doujak FE (1984) Electrophysiological measurement of photoreceptor membrane dichroism and polarization sensitivity in a Grapsid crab. J Comp Physiol A 154:597–605.CrossRefGoogle Scholar
  10. Duelli P, Wehner R (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol A 86:37–53.CrossRefGoogle Scholar
  11. Edrich W, Neumeyer C, Helversen O von (1979) Anti-sun orientation of bees with regard to a field of ultraviolet light. J Comp Physiol 134:151–157.CrossRefGoogle Scholar
  12. Fent K (1986) Polarized skylight orientation in the desert ant Cataglyphis. J Comp Physiol A 158:145–150.CrossRefGoogle Scholar
  13. Fernández-Morán H (1956) Fine structure of the insect retinula as revealed by electron microscopy. Nature (London) 177:742–743.CrossRefGoogle Scholar
  14. Frisch K von (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148.PubMedCrossRefGoogle Scholar
  15. Frisch K von (1960) “Sprache” und Orientierung der Bienen. Dr. Albert Wander-Gedenkvorlesung 3. Huber, Bern Stuttgart, pp 1–43.Google Scholar
  16. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New York.Google Scholar
  17. Goldsmith TH (1975) The polarization sensitivity-dichroic absorption paradox in arthropod photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 392–409.CrossRefGoogle Scholar
  18. Goldsmith TH, Philpott DE (1957) The microstructure of the compound eyes of insects. J Biophys Biochem Cytol 3:429–440.PubMedCrossRefGoogle Scholar
  19. Goldsmith TH, Wehner R (1977) Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J Gen Physiol 70:453–490.PubMedCrossRefGoogle Scholar
  20. Hämmerle B, Kolb G (1986) Rhabdomstruktur im dorsalen Augenbereich des Apfelwicklers Adoxophyes reticulana (Tortricidae, Lepidoptera). Verh Dtsch Zool Ges 79:364.Google Scholar
  21. Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J Comp Physiol A 154:157–167.CrossRefGoogle Scholar
  22. Hateren JH van (1986) Electrical coupling of neuroommatidial photoreceptor cells in the blowfly. J Comp Physiol A 158:795–811.PubMedCrossRefGoogle Scholar
  23. Helversen O von, Edrich W (1974) Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J Comp Physiol A 94:33–47.CrossRefGoogle Scholar
  24. Herrling PL (1976) Regional distribution of three ultrastructural retinula types in the retina of Cataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Cell Tissue Res 169:247–266.PubMedCrossRefGoogle Scholar
  25. Horridge GA, Marčelja L, Jahnke R, Matič T (1983) Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol A 150:271–294.CrossRefGoogle Scholar
  26. Kirschfeld K (1972) Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z Naturforsch 30c:88–90.Google Scholar
  27. Kolb G (1986) Rhabdome der dorsalen Augenrandzone und anderer Augenbereiche des Tagfalters Aglais urticae L. (Nymphalidae). Verh Dtsch Zool Ges 79:368.Google Scholar
  28. Kuwabara M, Naka K (1959) Response of a single retinula cell to polarized light. Nature (London) 184:455–456.CrossRefGoogle Scholar
  29. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honey bee’s compound eye: polarization and angular sensitivity. J Comp Physiol A 141:19–30.CrossRefGoogle Scholar
  30. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol A 158:1–7.CrossRefGoogle Scholar
  31. Labhart T (1987) The physiology of polarization-opponent interneurons in the visual system of crickets. In: Eisner NC, Creutzfeld O (eds) Neue Wege in der Hirnforschung. Beiträge zur 15. Göttinger Neurobiologentagung. Thieme, Stuttgart New York, p 141.Google Scholar
  32. Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature (London) 331:435–437.CrossRefGoogle Scholar
  33. Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket’s compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155:289–296.CrossRefGoogle Scholar
  34. Langer H (1965) Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges. Z Vergl Physiol 51:258–263.CrossRefGoogle Scholar
  35. Laughlin SB (1976) The sensitivity of dragonfly photoreceptors and the voltage gain of transduction. J Comp Physiol 111:221–247.CrossRefGoogle Scholar
  36. Laughlin SB, Menzel R, Snyder AW (1975) Membranes, dichroism and receptor sensitivity. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 237–259.CrossRefGoogle Scholar
  37. Lillywhite PG (1977) Single photon signals and transduction in an insect eye. J Comp Physiol A 122:189–200.CrossRefGoogle Scholar
  38. Lillywhite PG (1978) Coupling between locust photoreceptors revealed by a study of quantum bumps. J Comp Physiol A 125:13–27.CrossRefGoogle Scholar
  39. Lythgoe JN, Hemmings CC (1967) Polarized light and underwater vision. Nature (London) 213:893–894.CrossRefGoogle Scholar
  40. Menzel R, Snyder AW (1974) Polarized light detection in the bee, Apis mellifera. J Comp Physiol 88:247–270.CrossRefGoogle Scholar
  41. Menzel R, Ventura DF, Hertel H, Souza JM de, Greggers U (1986) Spectral sensitivity of photoreceptors in insect compound eyes: Comparison of species and methods. J Comp Physiol A 158:165–177.CrossRefGoogle Scholar
  42. Meyer EP, Labhart T (1981) Pore canals in the cornea of a functionally specialized area of the honey bee’s compound eye.Cell Tissue Res 216:491–501.PubMedCrossRefGoogle Scholar
  43. Miller WH (1957) Morphology of the ommatidia of the compound eye of Limulus. J Biophys Biochem Cytol 3:421–428.PubMedCrossRefGoogle Scholar
  44. Moody MF, Parriss JR (1961) The discrimination of polarized light by Octopus: a behavioral and morphological study. Z Vergl Physiol 44:268–291.CrossRefGoogle Scholar
  45. Mueller KJ (1973) Photoreceptors in the crayfish compound eye: electrical interactions between cells as related to polarized light sensitivity. J Physiol 232:573–595.Google Scholar
  46. Rossel S (1987) Das Polarisationssehen der Biene. Naturwissenschaften 74:53–62.CrossRefGoogle Scholar
  47. Rossel S, Wehner R (1982) The bee’s map of the E-vector pattern in the sky. Proc Natl Acad Sci USA 79:4451–4455.PubMedCrossRefGoogle Scholar
  48. Rossel S, Wehner R (1984a) How bees analyze the polarization patterns in the sky. Experiments and model. J Comp Physiol A 154:607–615.CrossRefGoogle Scholar
  49. Rossel S, Wehner R (1984b) Celestial orientation in bees: The use of spectral cues. J Comp Physiol A 155:605–613.CrossRefGoogle Scholar
  50. Rossel S, Wehner R (1986) Polarization vision in bees. Nature (London) 323:128–131.CrossRefGoogle Scholar
  51. Rossel S, Wehner R (1987) The bee’s E-vector compass. In: Menzel R, Mercer A (eds) Neurobiology and behavior of the honey bee. Springer, Berlin Heidelberg New York Tokyo, pp 76–93.CrossRefGoogle Scholar
  52. Rossel S, Wehner R, Lindauer M (1978) E-vector orientation in bees. J Comp Physiol A 125:1–12.CrossRefGoogle Scholar
  53. Schinz RH (1975) Structural specialization in the dorsal retina of the bee, Apis mellifera. Cell Tissue Res 162:23–34.PubMedCrossRefGoogle Scholar
  54. Schneider L, Langer H (1969) Die Struktur des Rhabdoms im “Doppelauge” des Wasserläufers Gerris lacustris. Z Zellforsch 99:538–559.PubMedCrossRefGoogle Scholar
  55. Schwind R (1983a) A polarization-sensitive response of the flying water bug Notonecta glauca to UV light. J Comp Physiol A 150:87–91.CrossRefGoogle Scholar
  56. Schwind R (1983b) Zonation of the optical environment and zonation in rhabdom structure within the eye of the backswimmer Notonecta glauca. Cell Tissue Res 232:53–63.PubMedCrossRefGoogle Scholar
  57. Schwind R (1984) Evidence for true polarization vision based on a two-channel analyser system in the eye of the water bug, Notonecta glauca. J Comp Physiol A 154:53–57.CrossRefGoogle Scholar
  58. Shaw SR (1967) Simultaneous recordings from two cells in the locust retina. Z Vergl Physiol 55:183–194.CrossRefGoogle Scholar
  59. Shaw SR (1975) Retinal resistance barriers and electrical lateral inhibition. Nature (London) 255:480–483.CrossRefGoogle Scholar
  60. Smola U, Tscharntke H (1979) Twisted rhabdomeres in the dipteran eye. J Comp Physiol A 133:291–297.CrossRefGoogle Scholar
  61. Snyder AW (1973) Polarization sensitivity of individual retinula cells. J Comp Physiol 83:331–360.CrossRefGoogle Scholar
  62. Sommer E (1979) Untersuchungen zur topographischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene Apis mellifera (Hymenoptera). Diss, Univ Zürich.Google Scholar
  63. Stockhammer K (1956) Zur Wahrnehmung der Schwingungsrichtung linear polarisierten Lichtes bei Insekten. Z Vergl Physiol 38:30–83.CrossRefGoogle Scholar
  64. Stockhammer K (1959) Die Orientierung nach der Schwingungsrichtung linear polarisierten Lichtes und ihre sinnesphysiologischen Grundlagen. Erg Biol 21:23–56.Google Scholar
  65. Stowe S (1983) A theoretical explanation of intensity-independent variation of polarization sensitivity in Crustacean retinula cells. J Comp Physiol A 153:435–441.CrossRefGoogle Scholar
  66. Vogt K (1987) Chromophores of insect visual pigments. Photobiochem Photobiophysics Suppl 273-296.Google Scholar
  67. Wada S (1974) Spezielle randzonale Ommatidien der Fliegen (Diptera:Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125.CrossRefGoogle Scholar
  68. Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C, Springer, Berlin Heidelberg New York, pp 281–469.Google Scholar
  69. Waterman TH (1984) Natural polarized light and vision. In: Ali MA (ed) Photoreception and Vision in Invertebrates. Plenum, New York, pp 63–114.Google Scholar
  70. Waterman TH, Fernández HR, Goldsmith TH (1969) Dichroism of photosensitive pigment in rhabdoms of crayfish Orconectes. J Gen Physiol 54:415–432.PubMedCrossRefGoogle Scholar
  71. Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1–132.Google Scholar
  72. Wehner R, Rossel S (1985) The bee’s celestial compass — A case study in behavioral neurobiology. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Fischer, Stuttgart New York, pp 11–53.Google Scholar
  73. Wehner R, Strasser S (1985) The POL area of the honey bee’s eye: behavioral evidence. Physiol Entomol 10:337–349.CrossRefGoogle Scholar
  74. Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J comp Physiol A 104:225–245.CrossRefGoogle Scholar
  75. Wolken JJ, Capenos J, Turano A (1957) Photoreceptor structures. J Biophys Biochem Cytol 3:441–448.PubMedCrossRefGoogle Scholar
  76. Wunderer H, Smola U (1982) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera: Calliphoridae): an eye region specialized for the detection of polarized light. Int J Morphol Embryol 11:25–38.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Samuel Rossel
    • 1
  1. 1.FreiburgGermany

Personalised recommendations