Skip to main content

Polarization Sensitivity in Compound Eyes

  • Conference paper

Abstract

The compound eyes of insects and many other arthropods can detect a basic property of light which normally remains invisible to us: the plane of polarization. Arising by scattering in air and water, as well as by reflection from surfaces (Fig. 1), linearly polarized light (characterized by the E-vector direction) is widespread in nature and provides the sensitive eye with a great deal of extra optical information. How polarized light is analyzed and used by arthropods is the theme of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum H, Stumpf H (1950) Das Bienenauge als Analysator für polarisiertes Licht. Z Naturforsch 5b:116–122.

    Google Scholar 

  • Blest AD, Stowe S, Eddey W (1982) A labile, Ca2+-dependent cytoskeleton in rhabdomeral microvilli of blowflies. Cell Tissue Res 223:553–573.

    Article  PubMed  CAS  Google Scholar 

  • Bohn H. Täuber U (1971) Beziehungen zwischen der Wirkung polarisierten Lichtes auf das Elektro-retinogramm und der Ultrastruktur des Auges von Gerris lacustris. Z Vergl Physiol 72:32–53.

    Article  Google Scholar 

  • Brines LB, Gould JL (1979) Bees have rules. Science 206:571–573.

    Article  PubMed  CAS  Google Scholar 

  • Brines LB, Gould JL (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96:69–91.

    Google Scholar 

  • Burghause FMHR (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jahrb Physiol 83:502–525.

    Google Scholar 

  • Burkhardt D, Wendler L (1960) Ein direkter Beweis für die Fähigkeit einzelner Sehzellen des Insektenauges, die Schwingungsrichtung polarisierten Lichtes zu analysieren. Z Vergl Physiol 43:687–692.

    Article  Google Scholar 

  • de Vries H, Spoor A, Jielof R (1953) Properties of the eye with respect to polarized light. Physica 19:419–432.

    Article  Google Scholar 

  • Doujak FE (1984) Electrophysiological measurement of photoreceptor membrane dichroism and polarization sensitivity in a Grapsid crab. J Comp Physiol A 154:597–605.

    Article  Google Scholar 

  • Duelli P, Wehner R (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol A 86:37–53.

    Article  Google Scholar 

  • Edrich W, Neumeyer C, Helversen O von (1979) Anti-sun orientation of bees with regard to a field of ultraviolet light. J Comp Physiol 134:151–157.

    Article  Google Scholar 

  • Fent K (1986) Polarized skylight orientation in the desert ant Cataglyphis. J Comp Physiol A 158:145–150.

    Article  Google Scholar 

  • Fernández-Morán H (1956) Fine structure of the insect retinula as revealed by electron microscopy. Nature (London) 177:742–743.

    Article  Google Scholar 

  • Frisch K von (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148.

    Article  PubMed  CAS  Google Scholar 

  • Frisch K von (1960) “Sprache” und Orientierung der Bienen. Dr. Albert Wander-Gedenkvorlesung 3. Huber, Bern Stuttgart, pp 1–43.

    Google Scholar 

  • Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Goldsmith TH (1975) The polarization sensitivity-dichroic absorption paradox in arthropod photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 392–409.

    Chapter  Google Scholar 

  • Goldsmith TH, Philpott DE (1957) The microstructure of the compound eyes of insects. J Biophys Biochem Cytol 3:429–440.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TH, Wehner R (1977) Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J Gen Physiol 70:453–490.

    Article  PubMed  CAS  Google Scholar 

  • Hämmerle B, Kolb G (1986) Rhabdomstruktur im dorsalen Augenbereich des Apfelwicklers Adoxophyes reticulana (Tortricidae, Lepidoptera). Verh Dtsch Zool Ges 79:364.

    Google Scholar 

  • Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J Comp Physiol A 154:157–167.

    Article  Google Scholar 

  • Hateren JH van (1986) Electrical coupling of neuroommatidial photoreceptor cells in the blowfly. J Comp Physiol A 158:795–811.

    Article  PubMed  Google Scholar 

  • Helversen O von, Edrich W (1974) Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J Comp Physiol A 94:33–47.

    Article  Google Scholar 

  • Herrling PL (1976) Regional distribution of three ultrastructural retinula types in the retina of Cataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Cell Tissue Res 169:247–266.

    Article  PubMed  CAS  Google Scholar 

  • Horridge GA, Marčelja L, Jahnke R, Matič T (1983) Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol A 150:271–294.

    Article  Google Scholar 

  • Kirschfeld K (1972) Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z Naturforsch 30c:88–90.

    Google Scholar 

  • Kolb G (1986) Rhabdome der dorsalen Augenrandzone und anderer Augenbereiche des Tagfalters Aglais urticae L. (Nymphalidae). Verh Dtsch Zool Ges 79:368.

    Google Scholar 

  • Kuwabara M, Naka K (1959) Response of a single retinula cell to polarized light. Nature (London) 184:455–456.

    Article  Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honey bee’s compound eye: polarization and angular sensitivity. J Comp Physiol A 141:19–30.

    Article  Google Scholar 

  • Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol A 158:1–7.

    Article  Google Scholar 

  • Labhart T (1987) The physiology of polarization-opponent interneurons in the visual system of crickets. In: Eisner NC, Creutzfeld O (eds) Neue Wege in der Hirnforschung. Beiträge zur 15. Göttinger Neurobiologentagung. Thieme, Stuttgart New York, p 141.

    Google Scholar 

  • Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature (London) 331:435–437.

    Article  Google Scholar 

  • Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket’s compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155:289–296.

    Article  Google Scholar 

  • Langer H (1965) Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges. Z Vergl Physiol 51:258–263.

    Article  Google Scholar 

  • Laughlin SB (1976) The sensitivity of dragonfly photoreceptors and the voltage gain of transduction. J Comp Physiol 111:221–247.

    Article  Google Scholar 

  • Laughlin SB, Menzel R, Snyder AW (1975) Membranes, dichroism and receptor sensitivity. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 237–259.

    Chapter  Google Scholar 

  • Lillywhite PG (1977) Single photon signals and transduction in an insect eye. J Comp Physiol A 122:189–200.

    Article  Google Scholar 

  • Lillywhite PG (1978) Coupling between locust photoreceptors revealed by a study of quantum bumps. J Comp Physiol A 125:13–27.

    Article  Google Scholar 

  • Lythgoe JN, Hemmings CC (1967) Polarized light and underwater vision. Nature (London) 213:893–894.

    Article  CAS  Google Scholar 

  • Menzel R, Snyder AW (1974) Polarized light detection in the bee, Apis mellifera. J Comp Physiol 88:247–270.

    Article  Google Scholar 

  • Menzel R, Ventura DF, Hertel H, Souza JM de, Greggers U (1986) Spectral sensitivity of photoreceptors in insect compound eyes: Comparison of species and methods. J Comp Physiol A 158:165–177.

    Article  Google Scholar 

  • Meyer EP, Labhart T (1981) Pore canals in the cornea of a functionally specialized area of the honey bee’s compound eye.Cell Tissue Res 216:491–501.

    Article  PubMed  CAS  Google Scholar 

  • Miller WH (1957) Morphology of the ommatidia of the compound eye of Limulus. J Biophys Biochem Cytol 3:421–428.

    Article  PubMed  CAS  Google Scholar 

  • Moody MF, Parriss JR (1961) The discrimination of polarized light by Octopus: a behavioral and morphological study. Z Vergl Physiol 44:268–291.

    Article  Google Scholar 

  • Mueller KJ (1973) Photoreceptors in the crayfish compound eye: electrical interactions between cells as related to polarized light sensitivity. J Physiol 232:573–595.

    Google Scholar 

  • Rossel S (1987) Das Polarisationssehen der Biene. Naturwissenschaften 74:53–62.

    Article  Google Scholar 

  • Rossel S, Wehner R (1982) The bee’s map of the E-vector pattern in the sky. Proc Natl Acad Sci USA 79:4451–4455.

    Article  PubMed  CAS  Google Scholar 

  • Rossel S, Wehner R (1984a) How bees analyze the polarization patterns in the sky. Experiments and model. J Comp Physiol A 154:607–615.

    Article  Google Scholar 

  • Rossel S, Wehner R (1984b) Celestial orientation in bees: The use of spectral cues. J Comp Physiol A 155:605–613.

    Article  Google Scholar 

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature (London) 323:128–131.

    Article  Google Scholar 

  • Rossel S, Wehner R (1987) The bee’s E-vector compass. In: Menzel R, Mercer A (eds) Neurobiology and behavior of the honey bee. Springer, Berlin Heidelberg New York Tokyo, pp 76–93.

    Chapter  Google Scholar 

  • Rossel S, Wehner R, Lindauer M (1978) E-vector orientation in bees. J Comp Physiol A 125:1–12.

    Article  Google Scholar 

  • Schinz RH (1975) Structural specialization in the dorsal retina of the bee, Apis mellifera. Cell Tissue Res 162:23–34.

    Article  PubMed  CAS  Google Scholar 

  • Schneider L, Langer H (1969) Die Struktur des Rhabdoms im “Doppelauge” des Wasserläufers Gerris lacustris. Z Zellforsch 99:538–559.

    Article  PubMed  CAS  Google Scholar 

  • Schwind R (1983a) A polarization-sensitive response of the flying water bug Notonecta glauca to UV light. J Comp Physiol A 150:87–91.

    Article  Google Scholar 

  • Schwind R (1983b) Zonation of the optical environment and zonation in rhabdom structure within the eye of the backswimmer Notonecta glauca. Cell Tissue Res 232:53–63.

    Article  PubMed  CAS  Google Scholar 

  • Schwind R (1984) Evidence for true polarization vision based on a two-channel analyser system in the eye of the water bug, Notonecta glauca. J Comp Physiol A 154:53–57.

    Article  Google Scholar 

  • Shaw SR (1967) Simultaneous recordings from two cells in the locust retina. Z Vergl Physiol 55:183–194.

    Article  Google Scholar 

  • Shaw SR (1975) Retinal resistance barriers and electrical lateral inhibition. Nature (London) 255:480–483.

    Article  CAS  Google Scholar 

  • Smola U, Tscharntke H (1979) Twisted rhabdomeres in the dipteran eye. J Comp Physiol A 133:291–297.

    Article  Google Scholar 

  • Snyder AW (1973) Polarization sensitivity of individual retinula cells. J Comp Physiol 83:331–360.

    Article  Google Scholar 

  • Sommer E (1979) Untersuchungen zur topographischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene Apis mellifera (Hymenoptera). Diss, Univ Zürich.

    Google Scholar 

  • Stockhammer K (1956) Zur Wahrnehmung der Schwingungsrichtung linear polarisierten Lichtes bei Insekten. Z Vergl Physiol 38:30–83.

    Article  Google Scholar 

  • Stockhammer K (1959) Die Orientierung nach der Schwingungsrichtung linear polarisierten Lichtes und ihre sinnesphysiologischen Grundlagen. Erg Biol 21:23–56.

    Google Scholar 

  • Stowe S (1983) A theoretical explanation of intensity-independent variation of polarization sensitivity in Crustacean retinula cells. J Comp Physiol A 153:435–441.

    Article  Google Scholar 

  • Vogt K (1987) Chromophores of insect visual pigments. Photobiochem Photobiophysics Suppl 273-296.

    Google Scholar 

  • Wada S (1974) Spezielle randzonale Ommatidien der Fliegen (Diptera:Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125.

    Article  Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C, Springer, Berlin Heidelberg New York, pp 281–469.

    Google Scholar 

  • Waterman TH (1984) Natural polarized light and vision. In: Ali MA (ed) Photoreception and Vision in Invertebrates. Plenum, New York, pp 63–114.

    Google Scholar 

  • Waterman TH, Fernández HR, Goldsmith TH (1969) Dichroism of photosensitive pigment in rhabdoms of crayfish Orconectes. J Gen Physiol 54:415–432.

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1–132.

    Google Scholar 

  • Wehner R, Rossel S (1985) The bee’s celestial compass — A case study in behavioral neurobiology. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Fischer, Stuttgart New York, pp 11–53.

    Google Scholar 

  • Wehner R, Strasser S (1985) The POL area of the honey bee’s eye: behavioral evidence. Physiol Entomol 10:337–349.

    Article  Google Scholar 

  • Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J comp Physiol A 104:225–245.

    Article  Google Scholar 

  • Wolken JJ, Capenos J, Turano A (1957) Photoreceptor structures. J Biophys Biochem Cytol 3:441–448.

    Article  PubMed  CAS  Google Scholar 

  • Wunderer H, Smola U (1982) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera: Calliphoridae): an eye region specialized for the detection of polarized light. Int J Morphol Embryol 11:25–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossel, S. (1989). Polarization Sensitivity in Compound Eyes. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics