Gallic Acid Derivatives and Hydrolyzable Tannins

  • E. Haslam
Part of the Springer Series in Wood Science book series (SSWOO)


Gallic acid and its derivatives as they occur in extracts of oak-galls constitute a chemical reagent of considerable antiquity. The blue-black color produced when an aqueous infusion is treated with salts of iron was first described by Pliny; its use in the analysis of mineral waters and as a component of invisible ink were noted as early as the sixteenth century. The eminent Swedish chemist Scheele first isolated gallic acid from oak-galls toward the end of the eighteenth century and the acid was named gallic by Braconnot in reference to its origin in plant galls. One of the first published preparations of gallic acid, however, is that of Sir Humphrey Davy (79) in the Journal of the Royal Institute (1803); he followed a directive from the trustees and governors to present a series of lectures on ‘the chemical principles of the art of tanning.’ This incident vividly illustrates the intimate relationship, for both scientific and historical reasons, that studies of the chemistry and biochemistry of gallic acid and its derivatives have with those of the vegetable tannins and ultimately the proanthocyanidins (142).


Gallic Acid Oxidative Coupling Hydrolyzable Tannin Phenolic Glycoside Methyl Gallate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armitage R, Bayliss GS, Gramshaw JG, Haslam E, Haworth RD, Jones K, Searle T 1961 Gallotannins, Part 3. The Constitution of Chinese, Turkish, sumac and tara tannins. J Chem Soc 1842–1853Google Scholar
  2. 2.
    Bate-Smith E C 1962 The phenolic constituents of plants and their taxonomic significance. J Linn Soc London Bot 95–173Google Scholar
  3. 3.
    Bate-Smith E C 1973 Haemanalysis of tannins: The concept of relative astringency. Phytochemistry 12: 907–912CrossRefGoogle Scholar
  4. 4.
    Bate-Smith EC 1976 Chemistry and taxonomy of Ribes. Biochem Syst Ecol 4: 13–18CrossRefGoogle Scholar
  5. 5.
    Bate-Smith E C 1977 Chemistry and taxonomy of the Cunoniaceae. Biochem Syst Ecol 5: 95–105CrossRefGoogle Scholar
  6. 6.
    Bate-Smith E C 1977 Astringent tannins of Acer species. Phytochemistry 16: 1421–1426CrossRefGoogle Scholar
  7. 7.
    Bate-Smith E C 1978 Systematic aspects of the astringent tannins of Acer species. Phytochemistry 17: 1945–1948CrossRefGoogle Scholar
  8. 8.
    Bate-Smith EC 1981 Astringent tannins of the leaves of Geranium species. Phytochemistry 20: 211–216CrossRefGoogle Scholar
  9. 9.
    Böhm B A 1979 Flavonoids of Tolmiea menziesii. Phytochemistry 18: 1079–1080CrossRefGoogle Scholar
  10. 10.
    Böhm B A, Collins F W, Wilkins C K 1975 The flavonoid glycoside gallates from Tellima grandiflora. Phytochemistry 14: 1099–1102CrossRefGoogle Scholar
  11. 11.
    Bradfield A E, Penney M 1948 The catechins of green tea. Part 2. J Chem Soc 224–2254Google Scholar
  12. 12.
    Britton G, Haslam E 1965 Gallotannins. Part 12. Phenolic constituents Arctostaphylos uvaursi. J Chem Soc 7312–7319Google Scholar
  13. 13.
    Britton G, Haslam E, Crabtree P W, Stangroom J E 1966 Gallotannins. Part 13. The structure of Chinese gallotannin. Evidence for a polygalloyl chain. J Chem Soc (C) 783–790Google Scholar
  14. 14.
    Bu’Lock J D 1965 The biosynthesis of natural products. McGraw-Hill London, 149Google Scholar
  15. 15.
    Bu’Lock J D 1980 Mycotoxins as secondary metabolites. In: Steyn P S (ed) The biosynthesis of mycotoxins. Academic Press London New York, 1–16Google Scholar
  16. 16.
    Conn EE, Swain T 1961 Biosynthesis of gallic acid in higher plants. Chem Ind 592–593Google Scholar
  17. 17.
    Cornthwaite DC,Haslam E 1965 Gallotannins. Part 9. The biosynthesis of gallic acid in Rhus typhina. J Chem Soc 3008–3011Google Scholar
  18. 18.
    Coxon D T, Holmes A, Ollis W D, Vora V C, Grant M S, Tee J L 1972 Flavonol digallates in green tea leaf. Tetrahedron 28: 2819–2826CrossRefGoogle Scholar
  19. 19.
    Culvenor C J 1966 The conformation of esters and the ‘acylation shift’. NMR evidence from pyrrolizidine alkaloids. Tetrahedron Lett 1091–1099Google Scholar
  20. 20.
    Dewick P M, Haslam E 1969 Phenol biosynthesis in higher plants — gallic acid. Biochem J 113: 537–542PubMedGoogle Scholar
  21. 21.
    Ferrier R J, Collins P M 1972 Monosaccharide chemistry. Penguin London, 40Google Scholar
  22. 22.
    Fischer E 1919 Untersuchungen über Depside und Gerbstoffe. Springer Berlin, 541Google Scholar
  23. 23.
    Fischer E, Bergmann K 1918 Über das tannin und die synthese ähnlicher Stoffe. V. Ber Deutsche Chem Ges 51: 1760–1804CrossRefGoogle Scholar
  24. 24.
    Gilson E R 1903 Sur deux nouveaux glucotannoides. CR Acad Sci 136: 385Google Scholar
  25. 25.
    Gonzalez A G, Francisco G G, Friere R, Hernandez R, Salazar J, Suarez E 1976 Lindleyin, a new phenolic gallyl glucoside from Aconium lindleyi. Phytochemistry 15: 344–346CrossRefGoogle Scholar
  26. 26.
    Gross G G 1982 Synthesis of galloyl coenzyme A thiol ester. Z Naturforsch 37C: 778–783Google Scholar
  27. 27.
    Gross G G 1982 Synthesis of β-glucogallin from UDP glucose and gallic acid by an enzyme from oak leaves. Fed Eur Biochem Lett 148: 67–70CrossRefGoogle Scholar
  28. 28.
    Gross G G 1983 Synthesis of mono-, di- and trigalloyl- β -D-glucose by β -glucogallin dependent galloyl transferases from oak leaves. Z Naturforsch 38C: 519–523Google Scholar
  29. 29.
    Gross G G 1983 Partial purification and properties of UDP-glucose: Vanillate 1-O-glucosyl transferase from oak leaves. Phytochemistry 22: 2179–2182CrossRefGoogle Scholar
  30. 30.
    Gross S R 1978 Recent advances in the chemistry and biochemistry of lignin. In: Swain T, Harborne J B, van Sumere C (eds) Recent advances in phytochemistry — Plant phenolics, vol 12. Plenum Press New York, 177–220Google Scholar
  31. 31.
    Hagerman A E, Butler L G 1981 The specificity of proanthocyanidin-protein interactions. J Biol Chem 256: 4494–4497PubMedGoogle Scholar
  32. 32.
    Hahlbrock K 1981 Flavonoids. In: Conn E E (ed) The biochemistry of plants, vol 7. Academic Press London New York, 425–456Google Scholar
  33. 33.
    Harborne J B 1967 Comparative biochemistry of the flavonoids. Academic Press London New York, 383Google Scholar
  34. 34.
    Harborne J B 1977 Introduction to ecological biochemistry. Academic Press London New York, 2Google Scholar
  35. 35.
    Haslam E 1965 Galloyl esters in the Aceraceae. Phytochemistry 4: 495–498CrossRefGoogle Scholar
  36. 36.
    Haslam E 1966 Chemistry of vegetable tannins. Academic Press London New York, 179Google Scholar
  37. 37.
    Haslam E 1967 Gallotannins. Part 14. Structure of the gallotannins. J Chem Soc (C) 1734–1738Google Scholar
  38. 38.
    Haslam E 1969 (+) Catechin-3-gallate and a polymeric procyanidin from Bergenia sp. J Chem Soc (C) 1824–1828Google Scholar
  39. 39.
    Haslam E 1974 Polyphenol-protein interactions. Biochem J 139: 285–288PubMedGoogle Scholar
  40. 40.
    Haslam E 1977 Symmetry and promiscuity in procyanidin biochemistry. Phytochemistry 16: 1625–1640CrossRefGoogle Scholar
  41. 41.
    Haslam E 1982 The metabolism of gallic and hexahydroxydiphenic acid in higher plants. Fortschr Chem Org Naturst 41: 1–46CrossRefGoogle Scholar
  42. 42.
    Haslam E 1982 Vegetable tannins. In: Conn E E (ed) The biochemistry of plants, vol 7. Academic Press London New York, 527–556Google Scholar
  43. 43.
    Haslam E, Gupta R K, Al-Shafi S M K, Layden K 1982 The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 2. Esters of (S)-hexahydroxydiphenic acid with D-glucopyranose (4Ct). J Chem Soc Perkin I 2525–2534Google Scholar
  44. 44.
    Haslam E, Haddock E A, Gupta R K 1982 The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 3. Esters of (R)- and (S)-hexahydroxydiphenic acid and dehydrohexahydrox- ydiphenic acid with D-glucopyranose (1C4 and related conformations). J Chem Soc Perkin I 2535–2545Google Scholar
  45. 45.
    Haslam E, Haddock E A, Gupta R K, Al-Shafi S M K, Magnolato D 1982 The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 1. Naturally occurring galloyl esters. J Chem Soc Perkin I 2515–2524Google Scholar
  46. 46.
    Haslam E, Haddock E A, Gupta R K, Al-Shafi S M K, Layden K, Magnolato D 1982 The metabolism of gallic and hexahydroxydiphenic acid in plants: Biogenetic and molecular taxonomic considerations. Phytochemistry 21: 1049–1062Google Scholar
  47. 47.
    Haslam E, Stangroom J E 1966 The esterase and depsidase activities of tannase. Biochem J 990: 28–31Google Scholar
  48. 48.
    Haworth R D 1961 Some problems in the chemistry of the gallotannins: Pedler Lecture. Proc Chem Soc 401–410Google Scholar
  49. 49.
    Haworth R D, da Silva L B 1951 Chebulinic acid. Part 1. J Chem Soc 3511Google Scholar
  50. 50.
    Haworth R D, da Silva L B 1954 Chebulinic acid. Part 2. J Chem Soc 3611–3617Google Scholar
  51. 51.
    Herrmann K 1978 Hydroxyzimtsäure und Hydroxybenzosäuren enthaltende Naturstoffe in Pflanzen. Fortschr Chem Org Naturst 35: 73–132CrossRefGoogle Scholar
  52. 52.
    Hillis W E, Seikel M 1970 Hydrolysable tannins of Eucalyptus delegatensis wood. Phytochemistry 9: 1115–1128CrossRefGoogle Scholar
  53. 53.
    Hoff J E, Oh H I, Armstrong G S, Hoff C A 1980 Hydrophobie interactions in tannic acid - protein complexes. J Agr Food Chem 28: 394–398CrossRefGoogle Scholar
  54. 54.
    Ikeya Y, Taguchi H, Yosioka I, Kobayashi H 1979 The constituents of Schizandra chinensis Baile: Isolation and structure determination of five new lignans, gomisin A, B, C, F and G and the absolute structure of schizandrin. Chem Pharm Bull 27: 1383–1394Google Scholar
  55. 55.
    Janzen D H 1969 Coevolution. Science 164: 415CrossRefGoogle Scholar
  56. 56.
    Janzen D H 1979 New horizons in the biology of plant defences. In: Rosenthal G A, Janzen D H (eds) Herbivores — their interactions with secondary plant metabolites. Academic Press New York, 331–350Google Scholar
  57. 57.
    Jochims J C, Taigel G, Schmidt O Th 1968 Protonenresonanze-spektrum und Konforma-tionsbestimmung einiger natürlicher Gerbstoffe. Justus Liebigs Ann Chem 717: 169–185CrossRefGoogle Scholar
  58. 58.
    Jurd L 1958 Plant polyphenols. III. The isolation of a new ellagitannin from the pellicle of the walnut. J Am Chem Soc 80: 2249–2252CrossRefGoogle Scholar
  59. 59.
    Keen P C, Haworth R D, Haslam E 1962 Gallotannins. Part 7. Tara gallotannins. J Chem Soc 3814–3818Google Scholar
  60. 60.
    Knowles P F, Haworth R D, Haslam E 1961 Gallotannins. Part 4. The biosynthesis of gallic acid. J Chem Soc 1854–1859Google Scholar
  61. 61.
    Loomis W D 1974 Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods Enzymol 31: 528–544CrossRefPubMedGoogle Scholar
  62. 62.
    Mayer W 1954 Dehydro-digallusäure. Justus Liebigs Ann Chem 578: 34–44CrossRefGoogle Scholar
  63. 63.
    Mayer W 1973 Otto Theodor Schmidt. Justus Liebigs Ann Chem 1759–1776Google Scholar
  64. 64.
    Mayer W, Bilzer B, Schauerte K 1971 Isolierung von Castalagin und Vescalagin aus Valoneagerbstoffen. Justus Liebigs Ann Chem 754: 149–151CrossRefGoogle Scholar
  65. 65.
    Mayer W, Bilzer W, Schilling G 1976 Castavaloninsäure, Isolierung und Strukturmittelung. Justus Liebigs Ann Chem 876–881Google Scholar
  66. 66.
    Mayer W, Busath H, Schick H 1976 Isovalolaginsäure. Justus Liebigs Ann Chem 2169–2177Google Scholar
  67. 67.
    Mayer W, Einwiller A, Jochims J C 1967 Die Struktur des Castalins. Justus Liebigs Ann Chem 707: 182–189CrossRefGoogle Scholar
  68. 68.
    Mayer W, Gorner A, Andra K 1977 Punicalagin und Punicalin, zwei Gerbstoffe aus den Schalen der Granatäpfel. Justus Liebigs Ann Chem 1976–1986Google Scholar
  69. 69.
    Mayer W, Gunther A, Busath H, Bilzer W, Schilling G 1976 Valolaginsäure. Justus Liebigs Ann Chem 987–995Google Scholar
  70. 70.
    Mayer W, Kullman F, Schilling G 1971 Die Struktur des Vescalins. Justus Liebigs Ann Chem 747: 51–59CrossRefGoogle Scholar
  71. 71.
    Mayer W, Kunz N, Loebich F 1965 Die Struktur des Hamamelitannins. Justus Liebigs Ann Chem 688: 232–238CrossRefGoogle Scholar
  72. 72.
    Mayer W, Schick H, Schilling G 1976 Trillosäure, eine neue Phenolcarbonsäure aus Valoneagerbstoffen. Justus Liebigs Ann Chem 2178–2184Google Scholar
  73. 73.
    Mayer W, Seitz H, Jochims J C 1969 Die Struktur des Castalins. Justus Liebigs Ann Chem 707: 182–189CrossRefGoogle Scholar
  74. 74.
    Mayer W, Schultz G, Wrede S, Schilling F G 1975 2-O-Cinnamoyl-l-O-galloyl-β-D-glucopyranose aus Rhizoma rhei. Justus Liebigs Ann Chem 946–952Google Scholar
  75. 75.
    Mayer W, Seitz H Y, Jochims J C, Schauerte K, Schilling G 1971. Struktur des Vescalagins. Justus Liebigs Ann Chem 751: 60–68CrossRefGoogle Scholar
  76. 76.
    McManus J P, Davis K G, Lilley T H, Haslam E 1981 The association of phenols with proteins. J Chem Soc Comm 309–311Google Scholar
  77. 77.
    Neish A C, Towers G H N, Chen D, El-Basyouni S Z, Ibrahim R K 1964 The biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3: 485–492CrossRefGoogle Scholar
  78. 78.
    Nielsen B J, Lacour N F, Jensen S R, Bock K 1980 The structure of acer tannin. Phytochemistry 19: 2033CrossRefGoogle Scholar
  79. 79.
    Nierenstein M 1932 Incunabula of tannin chemistry. Edward Arnold London, 116Google Scholar
  80. 80.
    Nishioka I, Nonaka G, Nishizawa M, Yamagishi T 1982 Tannins and related compounds. Part 5. Structure of Chinese gallotannin. J Chem Soc Perkin I 2963–2968Google Scholar
  81. 81.
    Nishioka I, Nonaka G, Tanaka T 1982 Tannins and related compounds. Part 3. A new phenolic acid, sanguisorbic acid dilactone and three new ellagitannins sanguins H-l, H-2 and H-3 from Sanguisorba officinalis. J Chem Soc Perkin I 1067–1073Google Scholar
  82. 82.
    Nishioka I, Nonaka G, Tanaka T, Nita M 1982 A dimeric hydrolysable tannin sanguin H-6 from Sanguisorba officinalis. Chem Pharm Bull 30: 2255–2257CrossRefGoogle Scholar
  83. 83.
    Nishira H, Joslyn M A 1968 The galloyl glucose compounds in green carob pods ( Ceratonia siliqua ). Phytochemistry 7: 2147–2156CrossRefGoogle Scholar
  84. 84.
    Nonaka G, Harada M, Nishioka I 1980 Eugeniin, a new ellagitannin from cloves. Chem Pharm Bull 28: 685–687CrossRefGoogle Scholar
  85. 85.
    Nonaka G, Matsumoto Y, Nishioka I 1981 Trapain, a new hydrolysable tannin from Trapa japónica Fleroy. Chem Pharm Bull 29: 1184–1186CrossRefGoogle Scholar
  86. 86.
    Nonaka G, Nishioka I 1983 Tannins and related compounds: Rhubarb. Isolation and structure of a glycerol gallate, gallic acid glucoside gallates, galloyl glucoses and isolindleyin. Chem Pharm Bull 31: 1652–1658Google Scholar
  87. 87.
    Nonaka G, Nishioka I, Nagasawa T, Oura H 1981 Tannins and related compounds: Rhubarb. Chem Pharm Bull 29: 2862–2870Google Scholar
  88. 88.
    Nonaka G, Nishizawa N, Yamagishi T, Nishioka I, Baudo H 1982 Novel hydrolysable tannins from Nuphar japonicum. Chem Pharm Bull 30: 1094–1097CrossRefGoogle Scholar
  89. 89.
    Okuda T 1981 Tknnins of medicinal plants and drugs. Heterocycles 15: 1323 - 1342CrossRefGoogle Scholar
  90. 90.
    Okuda T, Ashida M, Yoshida T 1981 Casuarictin and casuarinin - two new ellagitannins from Casuarina stricta. Heterocycles 16: 1681–1685CrossRefGoogle Scholar
  91. 91.
    Okuda T, Fujii R, Yoshida T 1980 Revised structures of chebulinic and chebulagic acid. Chem Pharm Bull 28: 3713–3715CrossRefGoogle Scholar
  92. 92.
    Okuda T, Hatano T, Nitta H, Fujii R 1980 Hydrolysable tannins having enantiomeric dehydrohe- xahydroxydiphenoyl group: Revised structure of terchebin and granatin B. Tetrahedron Lett 21: 4361–4364CrossRefGoogle Scholar
  93. 93.
    Okuda T, Hatano T, Ogawa N 1982 Rugosin D, E, F, and G. Dimeric and trimeric hydrolysable tannins. Chem Pharm Bull 30: 4234–4237Google Scholar
  94. 94.
    Okuda T, Hatano T, Yasui T 1981 Revised structure of isoterchebin isolated from Cornus officinalis. Heterocycles 16: 1321–1325CrossRefGoogle Scholar
  95. 95.
    Okuda T, Hatano T, Yazaki K 1982 Dehydrogeraniin, furosinin and furosin, dehydroellagitannins from Geranium thunbergii. Chem Pharm Bull 30: 1113–1116CrossRefGoogle Scholar
  96. 96.
    Okuda T, Hatano T, Yazaki K 1983 Praecoxin B, C, D and E. Novel ellagitannins from Stachyurus praecox. Chem Pharm Bull 31: 333–336CrossRefGoogle Scholar
  97. 97.
    Okuda T, Hatano T, Yazaki K, Ogawa N 1982 Rugosin A, B and C and praecoxin A, tannins having a valoneoyl group. Chem Pharm Bull 30: 4230–4233CrossRefGoogle Scholar
  98. 98.
    Okuda T, Seno K 1978 Mallotusinic acid and mallotinic acid, new hydrolysable tannins from Mallolotus japonicus. Tetrahedron Lett 139–142Google Scholar
  99. 99.
    Okuda T, Usman-Memon M, Yoshida T 1981 Alnusiin, a novel ellagitannin from Alnus sieboldiana fruits. Heterocycles 16: 1085–1087CrossRefGoogle Scholar
  100. 100.
    Okuda T, Yoshida T, Hatano T 1982 Constituents of Geranium thunbergii Sieb et Zudd. Part 12. Hydrated stereostructure and equilibration of geraniin. J Chem Soc Perkin I 9–14CrossRefGoogle Scholar
  101. 101.
    Okuda T, Yoshida T 1980 13C Nuclear magnetic resonance spectra of corilagin and geraniin. Heterocycles 14: 1743–1747Google Scholar
  102. 102.
    Okuda T, Yoshida T, Ashida M, Yazaki K 1982 Casuariin, stachyurin and strictinin. New Ellagitannins from Casuarina stricta. Chem Pharm Bull 30: 766–769CrossRefGoogle Scholar
  103. 103.
    Okuda T, Yoshida T, Hatano T, Koga T, Toh N, Kuriyama N 1982 Circular dichroism of hydrolysable tannins. I. Ellagitannins and gallotannins. Tetrahedron Lett 23: 3937–3940CrossRefGoogle Scholar
  104. 104.
    Okuda T, Yoshida T, Hatano T, Koga T, Toh N, Kuriyama N 1982 Circular dichroism of hydrolysable tannins. II. Ellagitannins and gallotannins. Tetrahedron Lett 23: 3941–3944Google Scholar
  105. 105.
    Okuda T, Yoshida T, Hatano T, Yazaki K, Ashida M 1982 Ellagitannins of the Casuarinaceae, Stachyuraceae, Myrtaceae. Phytochemistry 21: 2871–2874Google Scholar
  106. 106.
    Okuda T, Yoshida T, Koga T, Toh N 1982 Absolute configurations of chebulic, chebulinic and chebulagic acids. Chem Pharm Bull 30: 2655–2658CrossRefGoogle Scholar
  107. 107.
    Okuda T, Yoshida T, Kuwahara M, Usman-Memon M, Shingu T 1982 Agrimoniin and potentillin, an ellagitannin dimer and monomer having an α-glucose core. J Chem Soc Chem Comm 163–164Google Scholar
  108. 108.
    Okuda T, Yoshida T, Maruyama Y, Usman-Memon M, Shingu T 1982 Gemin B and C, dimeric ellagitannins from Geum japonicum. Chem Pharm Bull 30: 4245–4248CrossRefGoogle Scholar
  109. 109.
    Okuda T, Yoshida T, Usman-Memon M, Shingu T 1982 Structure of gemin A, a new dimeric ellagitannin having α- and β-glucose cores. J Chem Soc Chem Comm 351–353Google Scholar
  110. 110.
    Ozawa T, Arai N, Takino Y 1978 Structure of a new phenolic glycoside chesnatin from chestnut galls. Agr Biol Chem 42: 1907–1910CrossRefGoogle Scholar
  111. 111.
    Ozawa T, Haga K, Arai N, Takino Y 1978 Structure of a new phenolic glycoside from chestnut galls. Agr Biol Chem 42: 1511–1514CrossRefGoogle Scholar
  112. 112.
    Ozawa T, Kobayashi D, Takino Y 1977 Structure of the new phenolic glycosides MP-2 and MP-10 from chestnut galls. Agr Biol Chem 41: 1257–1262CrossRefGoogle Scholar
  113. 113.
    Ozawa T, Odaira Y, Imegawa H, Takino Y 1980 A new phenolic glycoside acetylcretanin and flavonoids from chestnut galls. Agr Biol Chem 44: 581–587CrossRefGoogle Scholar
  114. 114.
    Perkin A G, Uyeda Y 1922 Occurrence of a crystalline tannin in the leaves of Acer ginnala. J Chem Soc 66–76Google Scholar
  115. 115.
    Pohl R, Nahrstedt A, Dumkow K, Janistyn B 1974 Quercetin-galactoside gallate in Euphor- biaceae. Tetrahedron Lett 559–562Google Scholar
  116. 116.
    Reddy K K, Rajadurai S, Sastry S K N, Nayudamma Y 1964 Studies of the Dhava tannins. 1. The isolation and constitution of a gallotannin from Dhava (Anogeissus latifolia) 17: Aust J Chem 238–245Google Scholar
  117. 117.
    Roberts E A H, Myers M 1958 Theogallin, a polyphenol occurring in tea. II Identification as a galloyl quinic acid. J Sci Food Agrie 9: 701–705Google Scholar
  118. 118.
    Robinson W B, Calderón P, van Burén J 1968 Factors influencing the formation of precipitates and hazes by gelatin and condensed and hydrolysable tannins. J Agr Food Chem 16: 479–482CrossRefGoogle Scholar
  119. 119.
    Robinson W B, van Buren J 1969 Formation of complexes between protein and tannic acid. J Agr Food Chem 17: 772–777CrossRefGoogle Scholar
  120. 120.
    Saijo R 1983 Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agr Biol Chem 47: 455–460CrossRefGoogle Scholar
  121. 121.
    Schmidt O Th 1954 Ellagengerbstoffe. Leder 5: 129–134Google Scholar
  122. 122.
    Schmidt O Th 1955 Natürliche Gerbstoffe. In: Peach K, Tracey M V (eds) Moderne Methoden der Pflanzenanalyse, vol III. Springer Berlin, 517–548Google Scholar
  123. 123.
    Schmidt O Th 1956 Gallotannine und Ellagen-Gerbstoffe. Fortschr Chem Org Naturst 13: 71–136Google Scholar
  124. 124.
    Schmidt O Th 1957 Über Chebulagsäure und Chebulinsäure. Leder 8: 106Google Scholar
  125. 125.
    Schmidt O Th, Bernauer K 1954 Brevifolin und Brevifolin-Carbonsäure. Justus Liebigs Ann Chem 588: 211–230CrossRefGoogle Scholar
  126. 126.
    Schmidt O Th, Blin F, Lademann R 1952 Über die Bindung der Ellagsäure in Corilagin und Chebulagsäure. Justus Liebigs Ann Chem 576: 75–93CrossRefGoogle Scholar
  127. 127.
    Schmidt O Th, Demmler K 1952 Optisch aktiv 2,3,4,2’,3’,4’-hexamethoxydiphenylcarbonsäure- 6,6’. Justus Liebigs Ann Chem 576: 85–93CrossRefGoogle Scholar
  128. 128.
    Schmidt O Th, Demmler K 1954 Racemische und optisch aktive 2,3,4,2’,3’,4’-Hexaoxydiphenyl- carbonsäure-6,6’. Justus Liebigs Ann Chem 586: 170–193Google Scholar
  129. 129.
    Schmidt O Th, Ebert W, Koff M 1969 1,3,4,6-Tetragalloyl-β-D-glucose aus Algarobilla. Justus Liebigs Ann Chem 729: 251–252Google Scholar
  130. 130.
    Schmidt O Th, Komarek E 1955 Valoneasäure. Justus Liebigs Ann Chem 591: 156–176Google Scholar
  131. 131.
    Schmidt O Th, Lademann R 1951 Corilagin, ein weiterer kristallisierter Gerbstoff aus Divi-Divi. Justus Liebigs Ann Chem 571: 232–238CrossRefGoogle Scholar
  132. 132.
    Schmidt O Th, Mayer W 1956 Natürliche Gerbstoffe. Angew. Chem 68: 103–106Google Scholar
  133. 133.
    Schmidt O Th, Schanz R, Eckert R, Wurmb R 1967 Brevilagin 1. Justus Liebigs Ann Chem 706: 131–153Google Scholar
  134. 134.
    Schmidt O Th, Schanz R, Wurmb R, Groebke W 1967 Brevilagin 2. Justus Liebigs Ann Chem 706: 154–168CrossRefGoogle Scholar
  135. 135.
    Schmidt O Th, Schmidt DM 1953 Über das Vorkommen von Corilagin in Myrabolanen. Justus Liebigs Ann Chem 578: 31–34CrossRefGoogle Scholar
  136. 136.
    Schmidt O Th, Schmidt D M, Herok J 1954 Die Konstitution und Konfiguration des Corilagins. Justus Liebigs Ann Chem 587: 67–80CrossRefGoogle Scholar
  137. 137.
    Schmidt O Th, Schulz J, Feisser H 1967 Die Gerbstoffe der Myrabolanen. Justus Liebigs Ann Chem 706: 187–212CrossRefGoogle Scholar
  138. 138.
    Schmidt O Th, Schulz J, Wurmb R 1967 Terchebin. Justus Liebigs Ann Chem 706: 169–179CrossRefGoogle Scholar
  139. 139.
    Schmidt O Th, Wurtele L, Harreus A 1965 Penduculagin, eine 2,3:4,6-Di-S-(-)hexahydroxydiphenoyl-D-glucose aus Knoppern. Justus Liebigs Ann Chem 690: 150–162CrossRefGoogle Scholar
  140. 140.
    Uddin M, Haslam E 1967 Gallotannins. Part 15. Some observations on the structure of chebulinic acid and its derivatives. J Chem Soc (C) 2381–2384Google Scholar
  141. 141.
    Wagner H, Iyengar M A, Seligmann O, El-Sissi H I, Saleh NAM, El-Negoumy S I 1974 Prunin- 0-6’-gallate aus Acacia farnesiana. Phytochemistry 13: 2843–2844CrossRefGoogle Scholar
  142. 142.
    White T 1957 Tannins, their occurrence and significance. J Sci Food Agr 8: 377–385CrossRefGoogle Scholar
  143. 143.
    Wilkins C K, Böhm B A 1976 Ellagitannins from Tellima grandiflora. Phytochemistry 15: 211–214CrossRefGoogle Scholar
  144. 144.
    Zenk M H 1964 Zur Frage der Biosynthese von Gallusäure. Z Naturforschung 19B: 83–84Google Scholar
  145. 145.
    Zenk M H 1978 Recent work on cinnamoyl CoA derivatives. In: Swain T, Harborne J B, van Sumere C (eds) Recent advances in phytochemistry, vol 12. Biochemistry of plant phenolics. Plenum Press London, 139–176Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • E. Haslam

There are no affiliations available

Personalised recommendations