In this section, the term acidolysis refers specifically to the refluxing (or heating at 100°C) of lignin or lignocellulose with 0.2 M HCl in dioxane-water (9:1, v/v). This treatment was originally introduced in lignin chemistry as a procedure for isolating lignin from plant materials (Pepper et al. 1959) and as an analytical tool in lignin studies for determining the occurrence of β-O-4 structures and β-5 structures in spruce lignin (Adler et al. 1957, Adler 1977). It is noteworthy that, besides the acidolysis reagent, other mixtures containing dioxane and hydrogen chloride have been used for the extraction of lignin from plant materials (Stumpf and Freudenberg 1950, Stumpf et al. 1953, Pla et al. 1984).


High Performance Liquid Chromatography Lignin Degradation Trimethylsilyl Derivative Acidolysis Reaction Trimethyl Borate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler E (1977) Lignin chemistry — past, present and future. Wood Sci Technol 11: 169–218CrossRefGoogle Scholar
  2. Adler E, Miksche GE, Johansson B (1968) Über die Benzyl-arylätherbindung im Lignin. I. Freilegung von phenolischem Hydroxyl in Ligninpraparaten durch Spaltung leicht hydrolysierbarer Alkyl-arylatherstrukturen. Holzforschung 22: 171–174CrossRefGoogle Scholar
  3. Adler E, Pepper JM, Eriksoo E (1957) Action of mineral acid on lignin and model substances of guaiacylglycerol-beta-aryl ether type. Ind Eng Chem 49: 1391–1392CrossRefGoogle Scholar
  4. Borgmeyer JR, Crawford DL (1985) Production and characterization of polymeric lignin degradation intermediates from two different Streptomyces spp. Appl Environ Microbiol 49: 273–278PubMedGoogle Scholar
  5. Brunow G, Lundquist K (1984) On the synthesis of certain lignin-related a-aryloxycinnamic acids and enol ethers. Acta Chem Scand B38: 323–325CrossRefGoogle Scholar
  6. Crawford DL, Barder MJ, Pometto AL III, Crawford RL (1982) Chemistry of softwood lignin degradation by Streptomyces viridosporus. Arch Microbiol 131: 140–145CrossRefGoogle Scholar
  7. Crawford DL, Pometto AL, Crawford RL (1983) Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Appl Environ Microbiol 45: 898–904PubMedGoogle Scholar
  8. Davies JL, Nakatsubo F, Murakami K, Umezawa T (1987) Organic acid pulping of wood. IV. Reactions of arylglycerol-β-guaiacyl ethers. Mokuzai Gakkaishi 33: 478–486Google Scholar
  9. Deobald LA, Crawford DL (1987) Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus. Appl Microbiol Biotechnol 26: 158–163CrossRefGoogle Scholar
  10. Ede RM, Brunow G (1989) Formic acid/peroxyformic acid pulping. II. Synthesis of 3-aryl-2,3- dihydro-7-methoxy-2-benzofuranmethanols - model compounds for lignin acidolysis products. Holzforschung 43: 127–129CrossRefGoogle Scholar
  11. Esenther GR, Kirk TK (1974) Catabolism of aspen sapwood in Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 67: 989–991Google Scholar
  12. Fischer HE, Hibbert H (1947) Studies on lignin and related compounds. LXXXIII. Synthesis of 3-hydroxy-l-(4-hydroxy-3-methoxyphenyl)-2-propanone. J Am Chem Soc 69: 1208–1210CrossRefGoogle Scholar
  13. Froment P, Robert A (1970) Etude des conditions d’extraction par des solution dioxane-eau- acide chlorhydrique. Rev ATIP 24: 189–193Google Scholar
  14. Gellerstedt G, Lindfors EL (1987) On the formation of enol ether structures in lignin during kraft cooking. Nord Pulp Pap Res J 2: 71–75CrossRefGoogle Scholar
  15. Gellerstedt G, Lindfors EL, Lapierre C, Monties B (1984) Structural changes in lignin during kraft cooking. 2. Characterization by acidolysis. Sven Papperstidn 87: R61–R67Google Scholar
  16. Gorecki EW, Pepper JM (1959) The synthesis of a lignin model substance: 3-hydroxy-l-(4-hydroxy-3,5-dimethoxyphenyl)-2-propanone. Can J Chem 37: 2089–2092CrossRefGoogle Scholar
  17. Habu N, Matsumoto Y, Ishizu A, Nakano J (1990) The role of the diarylpropane structure as aminor constituent in spruce lignin. Holzforschung 44: 67–71CrossRefGoogle Scholar
  18. Higuchi T, Tanahashi M, Nakatsubo F (1972a) Acidolysis of bamboo lignin. III. Estimation of arylglycerol-β-aryl ether groups in lignins. Wood Res (Kyoto) 54: 9 - 18Google Scholar
  19. Higuchi T, Tanahashi M, Sato A (1972b) Acidolysis of bamboo lignin. I. Gas-liquid chromatography and mass spectrometry of acidolysis monomers. Mokuzai Gakkaishi 18: 183–189Google Scholar
  20. Hoo LH, Sarkanen KV, Anderson CD (1983) Formation of C6C2-enol ethers in the acid- catalyzed hydrolysis of erythro-veratrylglycerol-β-(2-methoxyphenyl) ether. J Wood Chem Technol 3: 223–243CrossRefGoogle Scholar
  21. Karlsson O, Lundquist K, Meuller S, Westlid K (1988) On the acidolytic cleavage of arylglycerol β-aryl ethers. Acta Chem Scand B42: 48 - 51CrossRefGoogle Scholar
  22. Kirk TK (1975) Effects of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood. Holzforschung 29: 99 - 107CrossRefGoogle Scholar
  23. Kirk TK, Adler E (1970) Methoxyl-deficient structural elements in lignin of sweetgum decayed by a brown-rot fungus. Acta Chem Scand 24: 3379 - 3390CrossRefGoogle Scholar
  24. Kirk TK, Chang H-m (1975) Decomposition of lignin by white-rot fungi. II. Characterization of heavily degraded lignins from decayed spruce. Holzforschung 29: 56 - 64CrossRefGoogle Scholar
  25. Kirk TK, Chang H-m, Lorenz LF (1975a) Topochemistry of the fungal degradation of lignin in birch wood as related to the distribution of guaiacyl and syringyl lignins. Wood Sci Technol 9: 81 - 86CrossRefGoogle Scholar
  26. Kirk TK, Connors WJ, Bleam RD, Hackett WF, Zeikus JG (1975b) Preparation and microbial decomposition of synthetic [14C] lignins. Proc Natl Acad Sci 72: 2515 - 2519PubMedCrossRefGoogle Scholar
  27. Konishi K, Inoue Y, Higuchi T (1972) Decomposition of lignin by Coriolus versicolor. IV. Effect of laccase type enzyme on the interphenylpropane linkage of lignin. Mokuzai Gakkaishi 18: 571 - 576Google Scholar
  28. Kratzl K, Schweers W (1956) Uber die papierchromatographische Trennung der monomeren Àthanolyseprodukte des Lignins. III. Chem Ber 89: 186 - 192CrossRefGoogle Scholar
  29. Kristersson P, Lundquist K, Strand A (1980) Derivatization and analysis of low molecular weight lignin acidolysis products. Wood Sci Technol 14: 297 - 300CrossRefGoogle Scholar
  30. Kutsuki H, Higuchi T (1978) The formation of lignin of Erythrina crista-salli. Mokuzai Gakkaishi 24: 625–631Google Scholar
  31. Lane CF, Myatt HL, Daniels J, Hopps HB (1974) Organic synthesis using boranemethyl sulfide. II. Reduction of aromatic carboxylic acids in the presence of trimethyl borate. J Org Chem 39: 3052–3054CrossRefGoogle Scholar
  32. Lapierre C, Rolando C, Monties B (1982) Chromatographic en phase gazeuse sur colonne couplée à la spectrométrie de masse (CGCC-SM) et chromatographic en phase liquide à haute performance (CLHP) des monomères d’acidolyse des lignines. Bull Liaison Groupe Polyphenols 11: 381 - 387Google Scholar
  33. Lapierre C, Rolando C, Monties B (1983a) Characterization of poplar lignins acidolysis products: capillary gas-liquid chromatography of monomeric compounds. Holzforschung 37: 189–198CrossRefGoogle Scholar
  34. Lapierre C, Gaudillere JP, Monties B, Guittet E, Rolando C, Lallemand JY (1983b) Enrichissement photosynthetique en carbone 13 de lignines de peuplier: caractérisation préliminaire par acidolyse et RMN13C. Holzforschung 37: 217–224CrossRefGoogle Scholar
  35. Lapierre C, Monties B, Rolando C (1984) Structure des lignines: évaluation de liaisonsarylglycérolarylethers par thioacidolyse. C R Acad Sci Ser 3 299: 441 - 444Google Scholar
  36. Lapierre C, Monties B, Rolando C (1985) Thioacidolysis of lignin: comparison with acidolysis. J Wood Chem Technol 5: 277 - 292CrossRefGoogle Scholar
  37. Lapierre C, Monties B, Rolando C (1986) Thioacidolysis of poplar lignins: identification of monomeric syringyl products and characterization of guaiacylsyringyl lignin fractions. Holzforschung 40: 113 - 118CrossRefGoogle Scholar
  38. Lundquist K (1970) Acid degradation of lignin. II. Separation and identification of low molecular weight phenols. Acta Chem Scand 24: 889–907CrossRefGoogle Scholar
  39. Lundquist K (1973) Acid degradation of lignin. Part VIII. Low molecular weight phenols from acidolysis of birch lignin. Acta Chem Scand 27: 2597 - 2606CrossRefGoogle Scholar
  40. Lundquist K (1976) Low-molecular weight lignin hydrolysis products. Appl Polymer Symp 28: 1393 - 1407Google Scholar
  41. Lundquist K (1987) On the occurrence of β-1 structures in lignins. J Wood Chem Technol 7: 179 - 185CrossRefGoogle Scholar
  42. Lundquist K, Ericsson L (1970) Acid degradation of lignin. III. Formation of formaldehyde. Acta Chem Scand 24: 3681–3686CrossRefGoogle Scholar
  43. Lundquist K, Hedlund K (1967) Acid degradation of lignin. I. The formation of ketones of the guaiacylpropane series. Acta Chem Scand 21: 1750 - 1754CrossRefGoogle Scholar
  44. Lundquist K, Kirk TK (1971) Acid degradation of lignin. IV. Analysis of lignin acidolysis products by gas chromatography, using trimethylsilyl derivatives. Acta Chem Scand 25: 889 - 894PubMedCrossRefGoogle Scholar
  45. Lundquist K, Lundgren R (1972) Acid degradation of lignin. VII. The cleavage of ether bonds. Acta Chem Scand 26: 2005 - 2023CrossRefGoogle Scholar
  46. Nakatsubo F, Tanahashi M, Higuchi T (1972) Acidolysis of bamboo lignin. II. Isolation and identification of acidolysis products. Wood Res 53: 9 - 18Google Scholar
  47. Pepper JM, Baylis PET, Adler E (1959) The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane-water medium. Can J Chem 37: 1241 - 1248CrossRefGoogle Scholar
  48. Pla F, Froment P, Mouttet B, Robert A (1984) Étude de la délignification des végétaux paracidolyse. Holzforschung 38: 127 - 132CrossRefGoogle Scholar
  49. Pometto AL III, Crawford DL (1985) Simplified procedure for recovery of lignin acidolysis products for determining the lignin-degrading abilities of microorganisms. Appl Environ Microbiol 49: 879 - 881PubMedGoogle Scholar
  50. Stumpf W, Freudenberg K (1950) Lösliches Lignin aus Fichten- und Buchenholz. Angew Chem 62: 537CrossRefGoogle Scholar
  51. Stumpf W, Weygand F, Grosskinsky O-A (1953) Synthese von Dioxan-[14C] und Anwendung als Extraktionsmittel für lösliches Lignin. Chem Ber 86: 1391–1401CrossRefGoogle Scholar
  52. Susarev MP, Guseva VV (1964) Study of the phase equilibria in the system water-hydrogen-chloride-dioxane at 50 °C. J Appl Chem USSR (Engl Trans) 37: 1067–1072Google Scholar
  53. Westermark U (1985) The occurrence of p-hydroxyphenylpropane units in the middle-lamella lignin of spruce (Picea abies). Wood Sei Technol 19: 223–232CrossRefGoogle Scholar
  54. Wolter KE, Harkin JM, Kirk TK (1974) Guaiacyl lignin associated with vessels in aspen callus cultures. Physiol Plant 31: 140–143CrossRefGoogle Scholar
  55. Yamasaki T, Hata K, Higuchi T (1972) Chemical properties of dehydrogenation polymer from p-coumaryl alcohol. Mokuzai Gakkaishi 18: 361–366Google Scholar
  56. Yamasaki T, Hata K, Higuchi T (1973) Dehydrogenation polymer of sinapyl alcohol. Mokuzai Gakkaishi 19: 299–300Google Scholar
  57. Yasuda S, Ota K (1987) Chemical structures of sulfuric acid lignin. X. Reaction of syringylglycerol-β-syringyl ether and condensation of syringyl nucleus with guaiacyl lignin model compounds in sulfuric acid. Holzforschung 41: 59 - 65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • K. Lundquist

There are no affiliations available

Personalised recommendations