Advertisement

Probabilistic Inheritance and Reasoning in Hybrid Knowledge Representation Systems

  • Jochen Heinsohn
  • Bernd Owsnicki-Klewe
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 181)

Abstract

This paper proposes a probabilistic extension for the semantics of hybrid represen- tation systems comprising both a terminological and an assertional component. This extension maintains the original performance of drawing inferences on a hierarchy of terminological defi- nitions. It enlarges its range of applicability to real world environments determined not only by definitional but also by uncertain knowledge.

On the basis of the language construct “probabilistic implication” it is shown how belief and em- pirical information on concept dependencies can be represented. The concept of “probabilistic inheritance” is introduced. This also applies to inheritance problems like exception handling and multiple inheritance under “conflicting” information. Further, it is shown how simple inferences can be drawn using terminological, probabilistic, and assertional knowledge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brachman, R.J.: “I Lied about the Trees” Or, Defaults and Definitions in Knowledge Representation, The AI Magazine 6(3), Fall 1985, pp.80–93Google Scholar
  2. [2]
    Etherington, D.W.: Formalizing Nonmonotonic Reasoning Systems, Artificial Intelligence 31, 1987, pp.41–85MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Ginsberg, M.L.: Non–Monotonic Reasoning Using Dempster’s Rule, Proc. of the AAAI-84, Austin (Tex.), 1984, pp.126–129Google Scholar
  4. [4]
    Heinsohn, J.: Weiterentwicklung und Implementierung eines Inferenzmechanismus auf der Basis von Belief-Funktionen, Diplomarbeit, TU Braunschweig, Jan.1986Google Scholar
  5. [5]
    Liu, G.: Causal and Plausible Reasoning in Expert Systems, Proc. of the AAAI-86, Philadelphia (Pa.), 1986, pp.220–225Google Scholar
  6. [6]
    von Luck, K., Owsnicki-Klewe, B.: Neuere KI-Formalismen zur Repräsentation von Wissen, in: Christaller T. (ed.): KIFS-87, Springer, BerlinGoogle Scholar
  7. [7]
    McGregor R., Bates, R.: The LOOM Knowledge Representation System, Information Science Institute, Marina del Rey (CA), 1987Google Scholar
  8. [8]
    Nebel, B., von Luck, K.: Issues of Integration and Balancing in Hybrid Knowledge Representation Systems, in: Morik, K. (ed.): GWAI-87, Springer, 1987, pp.114–123Google Scholar
  9. [9]
    Sandewall, E.: Nonmonotonic Inference Rules for Multiple Inheritance with Exceptions, Proc. of the IEEE 74 (10), 1986, pp.1345–1353CrossRefGoogle Scholar
  10. [10]
    Shafer, G.: A Mathematical Theory of Evidence, Princeton University Press, Princeton, New Jersey, 1976zbMATHGoogle Scholar
  11. [11]
    Shastri, L.: Evidential Reasoning in Semantic Networks: A Formal Theory and its Parallel Implementation, University of Rochester, Ph.D., 1985Google Scholar
  12. [12]
    Touretzky, D.S.: The Mathematics of Inheritance Systems, Pitman, London, 1986zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Jochen Heinsohn
    • 1
  • Bernd Owsnicki-Klewe
    • 1
  1. 1.Philips Research Laboratory HamburgHamburg 54Federal Republic of Germany

Personalised recommendations