Advertisement

Hierarchische linienbasierte Tiefenbestimmung in einem Stereobild

  • Stefan Posch
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 181)

Kurzfassung

Aus zwei Projektionen einer dreidimensionalen Szene, einem Stereobild, kann die Entfernung von Szenenpunkten bestimmt werden - eine wichtige Information für die Bildanalyse. Im vorliegenden Beitrag wird ein linienbasiertes Stereosystem beschrieben, das unter Verwendung einer Auflösungshierarchie korrespondierende gerade Liniensegmente eines Stereobildes zuordnet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [Arn83]
    Arnold, Reginald: Automated Stereo Perception. Ph. D. Thesis, Stanford University, 1983Google Scholar
  2. [Aya85]
    Ayache, N.; Faverjon, B.: Fast Stereo Matcher Based on Prediction and Recursive Verification of Hypothesis. Proc. 3rd Workshop on Computer Vision: Representation and Control, S. 27–37, 1985Google Scholar
  3. [Bak81]
    Baker, H.; Binford, T.: Depth from Edge and Intensity Based Stereo. Proc. 7. Int. Joint Conference on Artificial Intelligence (IJCAI), S. 631–636,1981Google Scholar
  4. [Bak82]
    Baker, H.: Depth from Edge and Intensity Based Stereo. PhD Theses, Dep. of Computer Science, Standford University, 1982Google Scholar
  5. [Bar82]
    Barnard, S.; Fischler, M.: Computational Stereo. Computing Surveys, Vol. 14 (4), S. 553–572, ACM, 1982Google Scholar
  6. [Dre87]
    Dreschler-Fischer, Leonie: Das ’Bootstrap-Problem’ bei der geometrischen Szenenrekonstruktion - ein Überblick. German Workshop on Artificial Intelligence, S. 1–15, Springer-Verlag, 1987Google Scholar
  7. [Gri81]
    Grimson, J.: From Images To Surfaces. MIT Press, Cambridge 1981Google Scholar
  8. [Jar83]
    Jarvis, R.A.: A Perspektiv on Range Finding Techniques for Computer Vision. Trans, on Pattern Analysis and Machine Intelligence (PAMI), Vol. 5 (2), S. 122–139, IEEE, 1983CrossRefGoogle Scholar
  9. [Llo87]
    Lloyd, S.A.; Haddow, E.R.; Boyce, J.F.: A Parallel Binocular Stereo Algorithm Utilizing Dynamic Programming and Relaxation Labeling. Computer Vision, Graphics and Image Processing, Vol. 39, S. 202–225,1987CrossRefGoogle Scholar
  10. [Med85]
    Medioni, Gerard; Nevatia, Ramakant: Segment-Based Stereo Matching. Computer Vision, Graphics and Image Processing (CVGIP), Vol. 31, S. 2–18,1985CrossRefGoogle Scholar
  11. [Mee86]
    Meer, Peter; Baugher, Sam; Rosenfeld, Azriel: Optimal Image Pyramid Generating Kernels. Tech. Report CS-TR-1665, Univ. Maryland, May 1986Google Scholar
  12. [Mey87]
    Meyer, Martin: Kalibrieren einer Stereokamera. Diplomarbeit IMMD 5, Univ. Erlangen–Nürnberg, 1987Google Scholar
  13. [Nev80]
    Nevatia, R.; Babu, R.: Line feature extraction and description. Computer Vision, Graphics and Image Processing (CVGIP), Vol. 13, S. 257–269,1980CrossRefGoogle Scholar
  14. [Oht85]
    Ohta, Y.; Kanade, T.: Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming. Trans, on Pattern Analysis and Machine Intelligence (PAMI), Vol. 7 (2), S. 139–154, IEEE, 1985CrossRefGoogle Scholar
  15. [Sch86]
    Scheuing, A.; Niemann, H.: Computing depth from stereo images by using optical flow. Pattern Recognition Letters, Vol. 4 (3), S. 205–212, Juli 1986CrossRefGoogle Scholar
  16. [Tsa85]
    Tsai, Roger: A Versatile Camera Calibration Technique for High Accuracy 3D Machine Vision Metrology using Off-the-Shell TV Camera and Lenses. IBM Research Report RC 11413, Yorktown Heights, Oct. 1985Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Stefan Posch
    • 1
  1. 1.Lehrstuhl für Informatik 5 (Mustererkennung)Universität Erlangen-NürnbergErlangenDeutschland

Personalised recommendations