Advertisement

Using Theory Resolution to Simplify Interpreted Formulae

  • Rolf Socher-Ambrosius
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 181)

Abstract

Loveland & Shostak (1980) gave an algorithm for converting a decision procedure for ground formulae in a first-order theory to a simplifier for such formulae. The algorithm is supposed to produce a simplest clause set among all formulae built from atoms of the original formula. The method proceeds by submitting all clauses that consist solely of atoms of the original formula to the decision procedure. The valid ones are added to the formula and then Quine’s algorithm of iterated consensus (Quine 1959) is applied. In this paper it is shown that this method does not meet the requirement of producing a simplest semantic equivalent. Furthermore we show that theory resolution can be used to extend Quine’s method to an algorithm that really accomplishes the task of simplifying interpreted formulae.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bläsius, K.H. & Bürckert, H.-J. (Eds.) (1987). Deduktionssysteme. Oldenbourg Verlag, MünchenzbMATHGoogle Scholar
  2. Gottlob, G. (1987). Subsumption and Implication. Information Processing Letters 24, 109 – 111MathSciNetzbMATHCrossRefGoogle Scholar
  3. Loveland, D.W. & Shostak, R.E. (1980). Simplifying Interpreted Formulas. In: W. Bibel & R. Kowalski (Eds.): Proc. of 5th Conference on Automated Deduction, Les Arcs. Springer LNCS 87, 97 – 109Google Scholar
  4. Quine, W.V. (1952). The Problem of Simplifying Truth Functions. American Math. Monthly, 59, 521 – 531MathSciNetzbMATHCrossRefGoogle Scholar
  5. Quine, W.V. (1959). On Cores and Prime Implicants of Truth Functions. American Math. Monthly, 66, 755 – 760MathSciNetzbMATHCrossRefGoogle Scholar
  6. Shostak, R.E. (1981). Deciding Linear Inequalities by Computing Loop Residues. Journal of the ACM, 28/4, 769 – 779MathSciNetCrossRefGoogle Scholar
  7. Stickel, M. E. (1985). Automated Deduction by Theory Resolution. Journal of Automated Reasoning, 1/4, 333 – 356MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Rolf Socher-Ambrosius
    • 1
  1. 1.Fachbereich InformatikUniversität KaiserslauternKaiserslauternW.-Germany

Personalised recommendations