Utterance Generation Without Choice

  • Erwin Klöck
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 181)


In this paper we discuss a parallel processing model for the generation of linguistic surface structures from a conceptual representation of the utterance content. We focus in partic- ular on the verb selection task and its integration into a system for sentence production and introduce the notion of uttering pressure to control the moment of verbalization. The resulting model allows for different surface realizations of a single proposition without requiring an explicit choice among the alternatives. The system architecture presented consists of several independent spreading activation networks that communicate via a global blackboard. This setup combines the advantages of a classical modular system with the processing characteristics of the connectionist paradigm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrè, E., Rist, T., and Herzog, G. (1987). Generierung natürlichsprachlicher Äußerungen zur simultanen Beschreibung von zeitveränderlichen Szenen. In Morik, K., editor, GWAI-87, 11th German Workshop on Artificial Intelligence, Informatik - Fachberichte 152, pages 330–338. Berlin:SpringerGoogle Scholar
  2. Chomsky, N. (1981). Lectures on Government and Binding, The Pisa Lectures. Studies in Generative Grammar 9. Dordrecht: Foris PublicationsGoogle Scholar
  3. Feldman, J. A. and Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6:205–254CrossRefGoogle Scholar
  4. Fillmore, C. J. (1968). The case for case. In Bach, E. and Harms, R., editors, Universals in Linguistic Theory. New YorkGoogle Scholar
  5. Hovy, E. H. (1987). Pragmatics and natural language generation, unpublished manuscript, Information Sciences Institute of the University of Southern CaliforniaGoogle Scholar
  6. Jackendoff, R. (1987). The status of thematic relations in linguistic theory. Linguistic Inquiry, 18:369–411Google Scholar
  7. Jacobs, P. S. (1985). A knowledge-based approach to language production. Technical Report UCB/CSD 86/254, Computer Science Division (EECS), University of California BerkeleyGoogle Scholar
  8. Jacobs, P. S. (1987). Knowledge-intensive natural language generation. Artificial Intelligence, 33:325–378CrossRefGoogle Scholar
  9. Kempen, G. and Hoenkamp, E. (1987). An incremental procedural grammar for sentence formulation. Cognitive Science, 11:201–258CrossRefGoogle Scholar
  10. McClelland, J. L. (1987). The case for interactionism in language processing. Technical Report ONR-87-1, Department of Psychology, Carnegie-Mellon UniversityGoogle Scholar
  11. Nii, H. P. (1986). Blackboard systems. Technical Report STAN-CS-86-1123, Department of Computer Science, Stanford UniversityGoogle Scholar
  12. Osgood, C. E. (1971). Where do sentences come from? In Steinberg, D. D. and Jakobovits, L. A., editors, Semantics, An Interdisciplinary Reader in Philosophy, Linguistics and Psychology, pages 497–529. Cambridge, UK: Cambridge University PressGoogle Scholar
  13. Rumelhart, D. E., Hinton, G. E., and McClelland, J. L. (1986). A general framework for parallel distributed processing. In Rumelhart, D. E., McClelland, J. L., and the PDP Research Group, editors, Parallel Distributed Processing, Explorations in the Microstructure of Cognition: Foundations, volume 1, pages 45–76. Cambridge, MA: MIT PressGoogle Scholar
  14. Tanenhaus, M. K., Burgess, C., D’Zmura, S. H., and Carlson, G. (1987). Thematic roles in language processing. In The Ninth Annual Conference of the Cognitive Science Society, pages 587–596. Seattle, WAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Erwin Klöck
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2Federal Republic of Germany

Personalised recommendations