Advertisement

Remarks on Consistency and Completeness of Circumscription

  • Karl Schlechta
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 181)

Abstract

We discuss definable minimal models, the semantical counterpart of first order circumscription, examine the adequacy of Mott’s system of circumscription and show that some completeness results of Perlis and Minker fail in Mott’s system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CK]
    C.C. Chang, H. Jerome Keisler: Model Theory, Amsterdam 1977Google Scholar
  2. [D]
    K.J. Devlin, Constructibility, Springer-Verlag, Berlin, 1984zbMATHGoogle Scholar
  3. [EMR]
    D. Etherington, R. Mercer, R. Reiter: On the adequacy of predicate circumscription for closed-world reasoning, Comput. Intelligence 1 (1985) 11–15CrossRefGoogle Scholar
  4. [G]
    M. Ginsberg: A circumscriptive theorem prover (1987) (to appear)Google Scholar
  5. [GPP]
    M. Gelfond, H. Przymusinska, T. Przymusinski: The extended closed world assumption and its relationship to parallel circumscription, Proc. ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, 133–139 (1986)Google Scholar
  6. [I]
    T. Imielinski: Results on Translating Defaults to Circumscription, AI 32 (1987) 131–146MathSciNetzbMATHGoogle Scholar
  7. [L]
    Vladimir Lifschitz: On the Satisfiability of Circumscription, Artificial Intelligence 28 (1986) 17–27MathSciNetzbMATHCrossRefGoogle Scholar
  8. [L2]
    Vladimir Lifschitz: Computing Circumscription, Proceedings IJCAI 1985, 121–127Google Scholar
  9. [M]
    Peter L. Mott: A Theorem on the Consistency of Circumscription, Artificial Intelligence 31 (1987) 87–98MathSciNetzbMATHCrossRefGoogle Scholar
  10. [McCl]
    J. McCarthy: Circumscription - a form of non-monotonic reasoning, AI 13 (1980), 27–39MathSciNetzbMATHGoogle Scholar
  11. [McC2]
    J. McCarthy: Applications of Circumscription to Formalizing Common-Sense Knowledge, AI 28 (1986), 89–116MathSciNetGoogle Scholar
  12. [Mr]
    M. P. Morreau: Circumscription, Report 85-15, Mathematisch Instituut, Universiteit van Amsterdam, 1985Google Scholar
  13. [PM]
    Donald Perlis, Jack Minker: Completeness Results for Circum- scription, Artificial Intelligence 28 (1986) 29–42MathSciNetzbMATHCrossRefGoogle Scholar
  14. [S]
    Y. Shoham: A Semantical Approach to Nonmonotonic Logics, Proceedings, Logic in Computer Science 1987, 275–279Google Scholar
  15. [Sch]
    K. Schlechta: Defaults, Preorder Semantics and Circumscription, 1987 (unpublished)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Karl Schlechta
    • 1
  1. 1.Berlin 41Germany

Personalised recommendations