Skip to main content

General and Molecular Cytology: The Plasma Membrane and the Tonoplast

  • Chapter
Book cover Progress in Botany

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 50))

Abstract

On the cellular level, the general relationship between structure and function becomes particularly obvious when different types of biomembranes are considered. The specificity of a membrane type is based on its composition of lipids and proteins. Mainly the proteins control the functions of a membrane and determine the properties of the compartment separated from the cytosolic phase of the cell by this membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alibert G, Carrasco A, Citharel B (1986) Physiol Vég 24:85–96.

    CAS  Google Scholar 

  • Amelimxen F, Heinze U (1984) Eur J Cell Biol 35:343–354.

    Google Scholar 

  • Askerlund P, Larsson C, Widell S, Møller IM (1987) Physiol Plant 71:9–19.

    CAS  Google Scholar 

  • Assman SM, Simoncini L, Schroeder JI (1985) Nature (London) 318:285–287.

    Google Scholar 

  • Auderset G, Sandelius AS, Penel C, Brightman A, Greppin H, Morré DJ (1986) Physiol Plant 68:1–12.

    Google Scholar 

  • Balsamo RA, Uribe EG (1988) Planta 173:190–196.

    CAS  Google Scholar 

  • Beilby MJ (1985) J Exp Bot 36:228–239.

    CAS  Google Scholar 

  • Bérczi A, Møller IM (1986) Physiol Plant 68:59–66.

    Google Scholar 

  • Berridge MJ, Irvine RF (1984) Nature (London) 312:315–321.

    CAS  Google Scholar 

  • Berti A, Gradmann P (1987) J Membr Biol 99:41–49.

    Google Scholar 

  • Bienfait HF (1985) J Bioenerg Biomembr 17:73–83.

    PubMed  CAS  Google Scholar 

  • Blum W, Key G, Weiler EW (1988) Physiol Plant 72:279–297.

    CAS  Google Scholar 

  • Bohdanowicz J (1987) Protoplasma 137:71–83.

    Google Scholar 

  • Boiler T, Wiemken A (1986) Ann Rev Plant Physiol 37:137–146.

    Google Scholar 

  • Borgeson CE, Bowman B J (1985) Plant Physiol 78:433–437.

    PubMed  CAS  Google Scholar 

  • Bowman BJ, Bowman EJ (1986) J Membr Biol 94:83–97.

    PubMed  CAS  Google Scholar 

  • Briskin, DP (1986) Physiol Plant 68:159–163.

    CAS  Google Scholar 

  • Briskin DP, Thornley WT, Wyse RE (1985) Plant Physiol 78:871–875.

    PubMed  CAS  Google Scholar 

  • Buckhout TJ, Hrubec TC (1986) Protoplasma 135:144–154.

    CAS  Google Scholar 

  • Bush DR, Sze H (1986) Plant Physiol 80:549–555.

    PubMed  CAS  Google Scholar 

  • Caldwell CR, Whitman CE (1987) Plant Physiol 84:918–923.

    PubMed  CAS  Google Scholar 

  • Carruthers A, Melchior DL (1986) Trends Biochem Sci 11:331–335.

    CAS  Google Scholar 

  • Chaffey NJ, Harris N (1985a) J Exp Bot 36:1612–1619.

    CAS  Google Scholar 

  • Chaffey NJ, Harris N (1985b) Planta 165:461–465.

    Google Scholar 

  • Chanson A, Fichmann J, Spear D, Taiz L (1985) Plant Physiol 79:159–164.

    PubMed  CAS  Google Scholar 

  • Chapman RL, Staehelin LA (1986) J Ultrastruct Res 93:87–91.

    Google Scholar 

  • Clement JD, Ghislain M, Dufour JP, Scalla R (1986) Plant Sci 45:43–50.

    CAS  Google Scholar 

  • Coetzee J, Fineran BA (1987) Protoplasma 136:145–153.

    Google Scholar 

  • Craig S, Staehelin LA (1986) J Cell Biol 103:514.

    Google Scholar 

  • Farquhar MG (1985) Annu Rev Cell Biol 1:447–488.

    PubMed  CAS  Google Scholar 

  • Fink J, Jeblic W, Blaschek W, Kauss H (1987) Planta 171:130–135.

    CAS  Google Scholar 

  • Gambardella R (1987) Planta 172:431–438.

    Google Scholar 

  • Gambardella R, Ligrone R (1987) Planta 172:439–447.

    Google Scholar 

  • Giannini JL, Pushnik JC, Briskin DP, Miller GW (1987) Plant Sci 53:39–44.

    CAS  Google Scholar 

  • Giddings TH Jr, Staehelin LA (1988) Planta 173:22–30.

    Google Scholar 

  • Gilkey JC, Staehelin LA (1986) J Electron Microsc 3:177–210.

    Google Scholar 

  • Grifflng LR, Fowke LC (1985) Protoplasma 128:22–30.

    Google Scholar 

  • Griffits G, Simons K (1986) Science 234:438–443.

    Google Scholar 

  • Grimes HD, Breidenbach RW (1987) Plant Physiol 85:1048–1054.

    PubMed  CAS  Google Scholar 

  • Guerrini F, Valenti V, Pupillo P (1987) Plant Physiol 85:828–834.

    PubMed  CAS  Google Scholar 

  • Haass D, Hackspacher G, Franz G (1985) Plant Sci 41:1–9.

    CAS  Google Scholar 

  • Hahn MG, Lerner DR, Fitter MS, Norman PM, Lamb CJ (1987) Planta 171:453–465.

    Google Scholar 

  • Haigler CH, Brown RM Jr (1986) Protoplasma 134:111–120.

    Google Scholar 

  • Hanahan DJ (1986) Annu Rev Biochem 55:483–509.

    PubMed  CAS  Google Scholar 

  • Harris N, Chaffey NJ (1985) Planta 165:191–196.

    Google Scholar 

  • Harris N, Chaffey NJ (1986) Nord J Bot 6:599–607.

    Google Scholar 

  • Harris N, Oparka KJ (1983) Protoplasma 114:93–102.

    Google Scholar 

  • Hedrich R, Neher E (1987) Nature (London) 329:833–835.

    Google Scholar 

  • Hedrich R, Flügge UI, Fernandez JM (1986) FEBS Lett 204:228–232.

    CAS  Google Scholar 

  • Hedrich H, Barbier-Brygoo H, Felle H, Flügge UI, Lüttge U, Maathuis FJM, Marx S, Prins HBA, Raschke K, Schnabl H, Schroeder JI, Struve I, Taiz L, Ziegler P (1988) Bot Acta 101:7–13.

    CAS  Google Scholar 

  • Herth W (1987) Naturwissenschaften 74:556–557.

    CAS  Google Scholar 

  • Hilling B, Amelunxen F (1985) Eur J Cell Biol 38:195–200.

    Google Scholar 

  • Hillmer S, Depta H, Robinson DG (1986) Eur J Cell Biol 41:142–149.

    Google Scholar 

  • Hübner R, Depta H, Robinson DG (1985) Protoplasma 129:214–222.

    Google Scholar 

  • Joachim S, Robinson DG (1984) Eur J Cell Biol 34:212–216.

    PubMed  CAS  Google Scholar 

  • Jochem P, Lüttge U (1987) J Plant Physiol 129:251–268.

    CAS  Google Scholar 

  • Kandasamy MK, Kappler R, Kristen U (1988) Planta 173:35–41.

    Google Scholar 

  • Kasamo K (1986a) Plant Physiol 80:818–824.

    PubMed  CAS  Google Scholar 

  • Kasamo K (1986b) Plant Cell Physiol 27:49–59.

    CAS  Google Scholar 

  • Kauss H (1987) Naturwissenschaften 74:275–281.

    CAS  Google Scholar 

  • Kauss H, Jeblick W (1987) Plant Sci 48:63–69.

    CAS  Google Scholar 

  • Kjellbom P, Larsson C (1984) Physiol Plant 62:501–509.

    CAS  Google Scholar 

  • Kjellbom P, Larsson C, Askerlund P, Schelin C, Widell S (1985) Photochem Photobiol 42:779–783.

    CAS  Google Scholar 

  • Kolb HA, Köhler K, Martinoia E (1987) J Membr Biol 95:163–169.

    CAS  Google Scholar 

  • Körner LE, Kjellbom P, Larsson C, Møller IM (1985) Plant Physiol 79:72–79.

    PubMed  Google Scholar 

  • Kroh M, Knuiman B (1985) Planta 166:287–299.

    Google Scholar 

  • Kruijff de B, Cullis PR, Verkleij AJ, Hope M J, VanEchteld CJA, Taraschi TF (1985) Lipid polymorphism and membrane function. In: Martonosi AN (ed) The Enzymes of Biological Membranes. Vol 1. Plenum Press, New York London, pp 131–204.

    Google Scholar 

  • Larsson C (1985) Plasma membranes. In: Linskens HF, Jackson JF (eds) Modern Methods of Plant Analysis. New Series, Vol I. Springer, Berlin Heidelberg New York Tokyo, pp 85–104.

    Google Scholar 

  • Leaver J, Chapman D (1985) Intrinsic protein-lipid interactions in biomembranes. In: Martonosi AN (ed) The Enzymes of Biological Membranes. Vol 1. Plenum Press, New York London, pp 205–227.

    Google Scholar 

  • Löbler M, Klämbt D (1985) J Biol Chem 260:9848–9853.

    PubMed  Google Scholar 

  • Lucas WJ, Keifer DW, Pesacreta TC (1986) Protoplasma 130:5–11.

    CAS  Google Scholar 

  • Lühring H (1986) Protoplasma 133:19–28.

    Google Scholar 

  • Lüttge U (1987) New Phytol 106:593–629.

    Google Scholar 

  • Lüttge U, Clarkson DT (1985) Prog Bot 47:73–86.

    Google Scholar 

  • Lynch DV, Steponkus PL (1987) Plant Physiol 83:761–767.

    PubMed  CAS  Google Scholar 

  • Lynes M, Lamb CA, Napolitano LA, Stout RG (1987) Plant Sci 50:225–232.

    Google Scholar 

  • Mandala S, Taiz L (1985) Plant Physiol 78:327–333.

    PubMed  CAS  Google Scholar 

  • Mandala S, Taiz L (1986) J Biol Chem 261:12850–12855.

    PubMed  CAS  Google Scholar 

  • Maretzki A, Thom M (1986) Plant Physiol 80:34–37.

    PubMed  CAS  Google Scholar 

  • Maretzki A, Thom M (1987) Plant Physiol 83:235–237.

    PubMed  CAS  Google Scholar 

  • Marquardt G, Lüttge U (1987) J Plant Physiol 129:269–286.

    CAS  Google Scholar 

  • Marré E, Ballarin-Denti A (1985) J Bioenerg Biomembr 17:1–21.

    PubMed  Google Scholar 

  • Martinoia E, Kaiser G, Schramm MJ, Heber U (1987) J Plant Physiol 131:467–478.

    Google Scholar 

  • Marty F (1985) Analytical characterization of vacuolar membranes from higher plants. In: Marin B (ed) Biochemistry and Function of Vacuolar Adenosine-Triphosphatase in Fungi and Plants. Springer, Berlin Heidelberg New York Tokyo, pp 14–28.

    Google Scholar 

  • Marty F, Branton D, Leigh RA (1980) Plant vacuoles. In: Stumpf PK, Conn EE (eds) The Biochemistry of Plants. Vol 1. Academic Press, London New York, pp 625–658.

    Google Scholar 

  • Matile P (1987) New Phytol 105:1–26.

    CAS  Google Scholar 

  • McLean B, Juniper BE (1986) Planta 169:153–161.

    Google Scholar 

  • Memon AR, Sommarin M, Kylin A (1987) Physiol Plant 69:237–243.

    CAS  Google Scholar 

  • Metcalf TN III, Wang JL, Schindler M (1986) Proc Natl Acad Sci USA 83:95–99.

    PubMed  CAS  Google Scholar 

  • Mitchell PM (1985) J Biochem 97:1–18.

    PubMed  CAS  Google Scholar 

  • Møller IM, Lin W (1986) Annu Rev Plant Physiol 37:309–334.

    Google Scholar 

  • Morré DJ, Auderset G, Penel C, Canut H (1987) Protoplasma 140:133–140.

    Google Scholar 

  • Mühlethaler K, Jay F (1985) Electron microscopy of biological membranes. In: Martonosi AN (ed) The Enzymes of Biological Membranes. Vol 1. Membrane structure and dynamics. Plenum Press, New York London, pp 1–28.

    Google Scholar 

  • Nagao T, Sasakawa H, Sugiyama T (1987) Plant Cell Physiol 28:1181–1186.

    CAS  Google Scholar 

  • Niemietz C, Willenbrink J (1985) Planta 166:545–549.

    CAS  Google Scholar 

  • Norman PM, Wingate VPM, Fitter MS, Lamb CJ (1986) Planta 167:452–459.

    CAS  Google Scholar 

  • Pihakaski K, Steponkus PL (1987) Physiol Plant 69:666–674.

    CAS  Google Scholar 

  • Platt-Aloia KA, Thomson WW (1987) Protoplasma 136:71–80.

    Google Scholar 

  • Pupillo P, Valenti V, DeLuca L, Hertel R (1986) Plant Physiol 80:384–389.

    PubMed  CAS  Google Scholar 

  • Qui ZS, Rubinstein B, Stern AI (1985) Planta 165:383–391.

    Google Scholar 

  • Randall SK. Sze H (1986) J Biol Chem 261:1364–1371.

    PubMed  CAS  Google Scholar 

  • Rausch T, Butcher DN, Taiz L (1987) Plant Physiol 85:996–999.

    PubMed  CAS  Google Scholar 

  • Raven JA (1987) New Phytol 106:357–422.

    Google Scholar 

  • Rea PA, Poole RJ (1985) Plant Physiol 77:46–52.

    PubMed  CAS  Google Scholar 

  • Rea PA, Poole RJ (1986) Plant Physiol 81:126–129.

    PubMed  CAS  Google Scholar 

  • Rea PA, Sanders D (1987) Physiol Plant 71:131–141.

    CAS  Google Scholar 

  • Reiss HD, Schnepf E, Herth W (1984) Planta 160:428–435.

    CAS  Google Scholar 

  • Robinson DG (1985) Plant Membranes. Endo-and Plasma-Membranes of Plant Cells. Wiley, New York.

    Google Scholar 

  • Robinson C, Larsson C, Buckhout TJ (1988) Physiol Plant 72:177–184.

    CAS  Google Scholar 

  • Rochester CP, Kjellbom P, Larsson C (1987a) Physiol Plant 71:257–263.

    CAS  Google Scholar 

  • Rochester CP, Kjellbom P, Andersson B, Larsson C (1987b) Arch Biochem Biophys 255:385–391.

    PubMed  CAS  Google Scholar 

  • Romanenko AS, Kovtun GY, Salyaev RK (1986) Ann Bot 57:1–10.

    CAS  Google Scholar 

  • Sandelius AS, Barr R, Crane FL, Morré DJ (1986a) Plant Sci 48:1–10.

    Google Scholar 

  • Sandelius AS, Penel C, Auderset G, Brightman A, Millard M, Morré DJ (1986b) Plant Physiol 81:177–185.

    PubMed  CAS  Google Scholar 

  • Scherer GFE, Fischer G (1985) Protoplasma 129:109–119.

    CAS  Google Scholar 

  • Scherer GFE, Stoffel B (1987) Planta 172:127–130.

    CAS  Google Scholar 

  • Schnepf E, Witte O, Rudolph U, Deichgräber G, Reiss HD (1985) Protoplasma 127:222–229.

    Google Scholar 

  • Shimazaki K, Kondo N (1987) Plant Cell Physiol 28:893–900.

    CAS  Google Scholar 

  • Shimazaki K, Iino M, Zeiger E (1986) Nature (London) 319:324–326.

    CAS  Google Scholar 

  • Singh SP, Kesav BVS, Briskin DP (1987) Physiol Plant 69:617–626.

    CAS  Google Scholar 

  • Smith JAC, Uribe EG, Ball E, Lüttge U (1984) Planta 162:299–304.

    CAS  Google Scholar 

  • Staal M, Hommels C, Kuiper D (1987) Physiol Plant 70:461–466.

    CAS  Google Scholar 

  • Staehelin LA, Chapman RL (1987) Planta 171:43–57.

    Google Scholar 

  • Struve I, Lüttge U (1988) Bot Acta 101:39–44.

    CAS  Google Scholar 

  • Sze H (1985) Annu Rev Plant Physiol 36:175–208.

    CAS  Google Scholar 

  • Tanchak MA, Grifflng LR, Mersey BG, Fowke LC (1984) Planta 162:481–486.

    CAS  Google Scholar 

  • Thorn M, Maretzki A (1985) Proc Natl Acad Sci USA 82:4697–4701.

    Google Scholar 

  • Thorn M, Leigh RA, Maretzki A (1986) Planta 167:410–413.

    Google Scholar 

  • Tsekos I, Reiss HD, Schnepf E (1985) Naturwissenschaften 72:489–490.

    Google Scholar 

  • Valk HCPM vd, Plegt LM, Loon LC v (1987) Plant Sci 52:159–167.

    Google Scholar 

  • Volkmann D (1984) Planta 162:392–403.

    Google Scholar 

  • VomDorp B, Volkmann D, Scherer GFE (1986) Planta 168:151–160.

    CAS  Google Scholar 

  • Voss M, Weidner M (1988) Planta 137:96–103.

    Google Scholar 

  • Wagner G (1985) Vacuoles. In: Linskens HF, Jackson JF (eds) Modem Methods of Plant Analysis, New Series, Vol 1. Springer, Berlin Heidelberg New York Tokyo, pp 105–108.

    Google Scholar 

  • Waldmann T, Jeblick W, Kauss H (1988) Planta 173:88–95.

    CAS  Google Scholar 

  • Wang Y, Leigh RA, Kaestner KH, Sze H (1986) Plant Physiol 81:497–502.

    PubMed  CAS  Google Scholar 

  • Wheeler JJ, Boss WF (1987) Plant Physiol 85:389–392.

    PubMed  CAS  Google Scholar 

  • Whitman CE, Travis RL (1985) Plant Physiol 79:494–498.

    PubMed  CAS  Google Scholar 

  • Willenbrink J (1987) Naturwissenschaften 74:22–29.

    CAS  Google Scholar 

  • Yguerabide J, Yguerabide EE (1985) Role of membrane fluidity in the expression of biological functions. In: Martonosi AN (ed) The Enzymes of Biological Membranes. Vol 1. Membrane Structure and Dynamics. Plenum Press, New York London, pp 393–420.

    Google Scholar 

  • Yoshida S, Uemura M (1986) Plant Physiol 82:807–812.

    PubMed  CAS  Google Scholar 

  • Yoshida S, Kawata T, Uemura M, Niki T (1986) Plant Physiol 80:161–166.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kristen, U. (1989). General and Molecular Cytology: The Plasma Membrane and the Tonoplast. In: Behnke, HD., Esser, K., Kubitzki, K., Runge, M., Ziegler, H. (eds) Progress in Botany. Progress in Botany/Fortschritte der Botanik, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74061-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74061-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74063-3

  • Online ISBN: 978-3-642-74061-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics