Skip to main content

Organization of the Spinothalamic Tract as a Relay for Cardiopulmonary Sympathetic Afferent Fiber Activity

  • Conference paper
Progress in Sensory Physiology 9

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 9))

Abstract

Sympathetic afferent fibers originate from a visceral organ, course in the thoracolumbar rami communicantes, have cell bodies located in dorsal root ganglia, and terminate in the gray matter of the spinal cord. Sympathetic afferent fibers from the heart transmit information about noxious stimuli associated with myocardial ischemia, i.e. angina pectoris. Previous reviews have described the characteristics of cardiovascular sympathetic afferent fibers (Bishop et al. 1983; Malliani 1982). This review summarizes that work and focuses on the neural mechanisms underlying the complexities of angina pectoris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud FM, Thames MD (1983) Interaction of cardiovascular reflexes in circulatory control. In: Shepherd JT, Abboud FM (eds) Handbook of physiology, sect 2, The cardiovascular system, vol III, part 2. American Physiological Society, Bethesda, Maryland, pp 675–753

    Google Scholar 

  • Albe-Fessard D, Levante D, Lamour Y (1974) Origin of spino-thalamic tract in monkeys. Brain Res 65:503–509

    PubMed  CAS  Google Scholar 

  • Ammons WS, Blair RW, Foreman RD (1983 a) Vagal afferent inhibition of primate T1-T5 spinothalamic neurons. J Neurophysiol 50:926–940

    PubMed  CAS  Google Scholar 

  • Ammons WS, Blair RW, Foreman RD (1983b) Vagal afferent inhibition of spinothalamic cell responses to sympathetic afferents and bradykinin in the monkey. Circ Res 53:603–612

    PubMed  CAS  Google Scholar 

  • Ammons WS, Blair RW, Foreman RD (1984a) Responses of primate T1-T5 spinothalamic neurons to gallbladder distension. Am J Physiol 247:R995–R1002

    PubMed  CAS  Google Scholar 

  • Ammons WS, Blair RW, Foreman RD (1984b) Greater splanchnic excitation of primate T1–T5 spinothalamic neurons. J Neurophysiol 51:592–603

    PubMed  CAS  Google Scholar 

  • Ammons WS, Blair RW, Foreman RD (1984c) Raphe magnus inhibition of primate T1-T4 spinothalamic cells with cardiopulmonary visceral input. Pain 20:247–260

    PubMed  CAS  Google Scholar 

  • Ammons WS, Girardot M-N, Foreman RD (1985a) T2–T5 spinothalamic neurons projecting to medial thalamus with viscerosomatic input. J Neurophysiol 54:73–89

    PubMed  CAS  Google Scholar 

  • Ammons WS, Girardot M-N, Foreman RD (1985 b) Effects of intracardiac bradykinin on T2-T5 spinothalamic cells. Am J Physiol 249:R147–R152

    PubMed  CAS  Google Scholar 

  • Ammons WS, Girardot M-N, Foreman RD (1986) Periventricular gray inhibition of thoracic spinothalamic cells projecting to medial and lateral thalamus. J Neurophysiol 55:1091–1103

    PubMed  CAS  Google Scholar 

  • Applebaum AE, Beall JE, Foreman RD, Willis WD (1975) Organization and receptive fields of primate spinothalamic tract neurons. J Neurophysiol 38:572–586

    PubMed  CAS  Google Scholar 

  • Armstrong D, Dry RML, Keele CA, Markham JW (1953) Observations on chemical excitation of cutaneous pain in man. J Physiol (Lond) 120:326–351

    CAS  Google Scholar 

  • Armstrong D, Jepson JB, Keele CA, Stewart JW (1957) Pain producing substance in human inflammatory exudates and plasma. J Physiol (Lond) 135:350–370

    PubMed  CAS  Google Scholar 

  • Aviado DM, Schmidt CF (1955) Reflexes from stretch receptors in blood vessels, heart and lungs. Physiol Rev 35:247–300

    PubMed  Google Scholar 

  • Bain WA, Irving JT, McSwiney BA (1935) The afferent fibres from the abdomen in the splanchnic nerves. J Physiol (Lond) 84:323–333

    PubMed  CAS  Google Scholar 

  • Baker DG, Coleridge HM, Coleridge JCG (1979) Vagal afferent C fibres from the ventricle. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge University Press, Cambridge

    Google Scholar 

  • Baker DG, Coleridge HM, Coleridge JCG, Nerdrum T (1980) Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of cat. J Physiol (Lond) 306:519–536

    PubMed  CAS  Google Scholar 

  • Beall JE, Martin RF, Applebaum AE, Willis WD (1976) Inhibition of primate spinothalamic tract neurons by stimulation in the region of the nucleus raphe magnus. Brain Res 114:328–333

    PubMed  CAS  Google Scholar 

  • Beckstead RM, Norgren R (1979) An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J Comp Neurol 184:455–472

    PubMed  CAS  Google Scholar 

  • Beckstead RM, Morse JR, Norgren R (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brainstem nuclei. J Comp Neurol 190:259–282

    PubMed  CAS  Google Scholar 

  • Belcher G, Ryall RW, Schaffner R (1978) The differential effects of 5-hydroxytryptamine, noradrenaline and raphe stimulation on nociceptive and non-nociceptive dorsal horn interneurones in the cat. Brain Res 151:307–321

    PubMed  CAS  Google Scholar 

  • Bennett GJ, Mayer DJ (1979) Inhibition of spinal cord interneurons by narcotic microinjection and focal electrical stimulation in the periaqueductal central gray matter. Brain Res 172:243–257

    PubMed  CAS  Google Scholar 

  • Bennett GJ, Seltzer Z, Lu GW, Nishikawa N, Dubner R (1983) The cells of origin of the dorsal column postsynaptic projection in the lumbosacral enlargements of cats and monkeys. Somatosens Res 1:131–149

    PubMed  CAS  Google Scholar 

  • Berkley HJ (1894) The intrinsic nerve supply of cardiac ventricles in certain vertebrates. Johns Hopkins Hosp Ref 4:248–255

    Google Scholar 

  • Berkley KJ (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J Comp Neurol 193:283–317

    PubMed  CAS  Google Scholar 

  • Besson JM, Guilbaud G, Lombard MC (1974) Effects of bradykinin intra-arterial injection into the limbs upon bulbar and mesencephalic reticular unit activity. Adv Neurol 4:207–215

    CAS  Google Scholar 

  • Bishop VS, Lombardi F, Malliani A, Pagani M, Recordati G (1976) Reflex sympathetic tachycardia during intravenous infusions in chronic spinal cats. Am J Physiol 230:25–29

    PubMed  CAS  Google Scholar 

  • Bishop VS, Malliani A, Thorén P (1983) Cardiac mechanoreceptors. In: Shepherd JT, Abboud FM (eds) Handbook of physiology, sect 2. The cardiovascular system, vol III, peripheral circulation and organ blood flow, part 2. American Physiological Society, Bethesda MD, pp 497–556

    Google Scholar 

  • Blair RW, Weber RN, Foreman RD (1981) Characteristics of primate spinothalamic tract neurons receiving viscerosomatic convergent inputs in T3–T5 segments. J Neurophysiol 46:797–811

    PubMed  CAS  Google Scholar 

  • Blair RW, Weber RN, Foreman RD (1982) Responses of thoracic spinothalamic neurons to intracardiac injection of bradykinin in the monkey. Circ Res 51:83–94

    PubMed  CAS  Google Scholar 

  • Blair RW, Weber RN, Foreman RD (1984a) Responses of spinoreticular and spinothalamic cells to intracardiac bradykinin. Am J Physiol 246:H500–H507

    PubMed  CAS  Google Scholar 

  • Blair RW, Amnions WS, Foreman RD (1984b) Responses of thoracic spinothalamic and spinoretricular cells to coronary artery occlusion. J Neurophysiol 51:636–648

    PubMed  CAS  Google Scholar 

  • Bleehen T, Keele CA (1977) Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3:367–377

    PubMed  CAS  Google Scholar 

  • Boivie J (1971) The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp Brain Res 12:331–353

    Google Scholar 

  • Boivie J (1979) An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 186:343–370

    PubMed  CAS  Google Scholar 

  • Bosnjak ZK, Zuperku EJ, Coon RL, Kampine JP (1979) Acute coronary artery occlusion and cardiac sympathetic afferent nerve activity. Proc Soc Exp Biol Med 161: 142–148

    PubMed  CAS  Google Scholar 

  • Bowsher D (1957) Termination of the central pain pathway in man. The conscious appreciation of pain. Brain 80:606–622

    PubMed  CAS  Google Scholar 

  • Bowsher D (1961) The termination of secondary somatosensory neurons within the thalamus of Macaca mulatta:an experimental degeneration study. J Comp Neurol 117:213–227

    PubMed  CAS  Google Scholar 

  • Brennen TJ, Oh U-T, Girardot M-N, Ammons WS, Foreman RD (1987) Inhibition of cardiopulmonary input to thoracic spinothalamic tract cells by stimulation of the subcoeruleus-parabrachial region in the primate. J Autonom Nerv Sys 18:61–72

    Google Scholar 

  • Brown AM (1967) Excitation of afferent cardiac sympathetic nerve fibres during myocardial ischaemia. J Physiol (Lond) 190:35–53

    PubMed  CAS  Google Scholar 

  • Brown AM (1979) Cardiac reflexes. In: Berne RM, Sperelakis N (eds) Handbook of physiology. The cardiovascular system. The heart, sect 2, vol I. American Physiological Society, Bethesda MD, pp 677–689

    Google Scholar 

  • Brown AM, Malliani A (1971) Spinal sympathetic reflexes initiated by coronary receptors. J Physiol (Lond) 212:685–705

    CAS  Google Scholar 

  • Burgess PR, Perl ER (1973) Cutaneous mechanoreceptors and nociceptors. In: Iggo A (ed) Somatosensory system. Springer, Berlin Heidelberg New York, pp 29–78 (Handbook of sensory physiology, vol 2)

    Google Scholar 

  • Burstein R, Cliffer KD, Giesler GJ Jr (1987) Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon. J Neurosci 7(12):4159–4164

    PubMed  CAS  Google Scholar 

  • Burton H, Craig AD (1983) Spinothalamic projections in cat, raccoon and monkey: a study based on anterograde transport of horseradish peroxidase. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory integration in the thalamus. Elsevier, Amsterdam, pp 17–41

    Google Scholar 

  • Carstens E (1982) Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by medial hypothalamic stimulation in the cat. J Neurophysiol 48:808–822

    PubMed  CAS  Google Scholar 

  • Carstens E, Trevino DL (1978) Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J Comp Neurol 182:151–166

    Google Scholar 

  • Carstens E, Fraunhoffer M, Zimmerman M (1981) Serotonergic mediation of descending inhibition from midbrain periaqueductal gray, but not reticular formation, of spinal nociceptive transmission in the cat. Pain 10:149–167

    PubMed  CAS  Google Scholar 

  • Carstens E, MacKinnon JD, Guinan MJ (1982) Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by medial preoptic and septal stimulation in the cat. J Neurophysiol 48:981–991

    PubMed  CAS  Google Scholar 

  • Carstens E, Fraunhoffer M, Suberg SN (1983) Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by lateral hypothalamus stimulation. J Neurophysiol 50:192–204

    PubMed  CAS  Google Scholar 

  • Casati R, Lombardi F, Malliani A (1979) Afferent sympathetic unmyelinated fibres with left ventricular endings in cats. J Physiol (Lond) 292:135–148

    PubMed  CAS  Google Scholar 

  • Casey KL, Keene JJ, Morrow T (1974) Bulboreticular and medial thalamic unit activity in relation to aversive behavior and pain. In: Bonica JJ (ed) Pain. Raven, New York, pp 197–205 (Advances in neurology, vol 4)

    Google Scholar 

  • Cechetto DF, Standaert DG, Saper CB (1985) Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J Comp Neurol 240:153–160

    PubMed  CAS  Google Scholar 

  • Cervero F (1982) Afferent activity evoked by natural stimulation of the biliary system in the ferret. Pain 13:137–151

    PubMed  CAS  Google Scholar 

  • Cervero F (1983 a) Somatic and visceral inputs into the thoracic spinal cord of the cat: effects of noxious stimulation of the biliary system. J Physiol (Lond) 337:51–67

    PubMed  CAS  Google Scholar 

  • Cervero F (1983 b) Mechanisms of visceral pain. In: Lipton S, Miles J (eds) Persistent pain: modern methods of treatment, vol 4. Grune and Stratton, London, pp 1–19

    Google Scholar 

  • Cervero F (1983 c) Supraspinal connections of neurones in the thoracic spinal cord of the cat: ascending projections and effects of descending impulses. Brain Res 275:251–261

    PubMed  CAS  Google Scholar 

  • Cervero F, Connell LA (1984) Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J Comp Neurol 230:88–98

    PubMed  CAS  Google Scholar 

  • Cervero F, Tattersall JEH (1985) Cutaneous receptive fields of somatic and viscerosomatic neurones in the thoracic spinal cord of the cat. J Comp Neurol 237:325–332

    PubMed  CAS  Google Scholar 

  • Cervero F, Connell LA, Lawson SN (1984) Somatic and visceral primary afferents in the lower thoracic dorsal root ganglia of the cat. J Comp Neurol 228:422–431

    PubMed  CAS  Google Scholar 

  • Cervero F, Lumb BM, Tattersall JEH (1985) Supraspinal loops that mediate visceral inputs to thoracic spinal cord neurones in the cat: involvement of descending pathways from raphe and reticular formation. Neurosci Lett 56:189–194

    PubMed  CAS  Google Scholar 

  • Chahl LA (1979) Pain induced by inflammatory mediators. In: Beers RF, Bennett EG (eds) Mechanisms of pain and analgesic compounds. Raven, New York, pp 273–284

    Google Scholar 

  • Chahl LA, Kirk EJ (1975) Toxins which produce pain. Pain 1:3–49

    PubMed  CAS  Google Scholar 

  • Chang HT, Ruch TC (1947) Topographical distribution of spinothalamic fibres in the thalamus of the spider monkey. J Anat 81:150–164

    Google Scholar 

  • Christie LG, Conti CR (1981) Systematic approach to evaluation of angina-like chest pain: pathophysiology and clinical testing with emphasis on objective documentation of myocardial ischaemia. Am Heart J 102:897–912

    PubMed  Google Scholar 

  • Chung JM, Kenshalo DR Jr, Gerhart KD, Willis WD (1979) Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. J Neurophysiol 42:1354–1369

    PubMed  CAS  Google Scholar 

  • Clark WEL (1936) The termination of ascending tracts in the thalamus of the macaque monkey. J Anat 71:7–40

    Google Scholar 

  • Coggeshall RE, Galbraith SL (1978) Categories of axons in mammalian rami communicantes. Part II. J Comp Neurol 181:349–360

    PubMed  CAS  Google Scholar 

  • Cohn PF (1986) Silent myocardial ischemia and infarction. In: Denolin H, Swan HJC (eds) Basic and clinical cardiology. Dekker, New York, pp 17–28

    Google Scholar 

  • Coleridge HM, Coleridge JCG (1980) Cardiovascular afferents involved in the regulation of peripheral vessels. Annu Rev Physiol 42:413–427

    PubMed  CAS  Google Scholar 

  • Coleridge HM, Coleridge JCG, Kidd C (1964) Cardiac receptors in the dog with particular reference to two types of endings in the ventricular wall. J Physiol (Lond) 174: 323–339

    PubMed  CAS  Google Scholar 

  • Coleridge JCG, Coleridge HM (1979) Chemoreflex regulation of the heart. In: Berne RM, Sperelakis N (eds) Handbook of physiology, sect 2, The cardiovascular system, vol 1, The heart. American Physiological Society, Bethesda MD, pp 653–676

    Google Scholar 

  • Coleridge JCG, Hemingway A, Holmes RL, Linden RJ (1957) The location of atrial receptors in the dog: a physiological and histological study. J Physiol (Lond) 136:174–197

    PubMed  CAS  Google Scholar 

  • Coulter JD, Maunz RA, Willis WD (1974) Effects of stimulation of sensorimotor cortex on primate spinothalamic neurons. Brain Res 65:351–356

    PubMed  CAS  Google Scholar 

  • Craig AD, Burton H (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45:443–466

    PubMed  Google Scholar 

  • Craig AD, Kniffki K-D (1985) Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J Physiol (Lond) 365:197–221

    PubMed  CAS  Google Scholar 

  • Csendes A, Sepulveda A (1980) Intraluminal gallbladder pressure measurements in patients with chronic or acute cholecystites. Am J Surg 13:383–385

    Google Scholar 

  • Cullen ML, Reese HL (1952) Myocardial circulatory changes measured by clearance of Na24-effect of common duct distension on myocardial circulation. J Appl Physiol 5:281–284

    PubMed  CAS  Google Scholar 

  • Dennis SG, Melzack R (1977) Pain-signalling systems in the dorsal and ventral spinal cord. Pain 4:97–132

    PubMed  CAS  Google Scholar 

  • Dieckmann G, Witzmann A (1982) Initial and long term results of deep brain stimulation for chronic intractable pain. Appl Neurophysiol 45:167–172

    PubMed  CAS  Google Scholar 

  • Duly PN, Wall PD, Webster KE (1968) Cells of origin of the spinothalamic tract in the cat and rat. Exp Neurol 21:550–562

    Google Scholar 

  • Donald DE, Shepherd JT (1978) Reflexes from the heart and lungs; physiological curiosities or important regulatory mechanisms. Cardiovasc Res 12:449–469

    Google Scholar 

  • Downman CBB (1955) Skeletal muscle reflexes of splanchnic and intercostal nerve origin in acute spinal and decerebrate cats. J Neurophysiol 18:217–235

    PubMed  CAS  Google Scholar 

  • Downman CBB, Evans MH (1957) The distribution of splanchnic afferents in the spinal cord of cat. J Physiol (Lond) 137:66–79

    PubMed  CAS  Google Scholar 

  • Duggan AW, Griersmith BT (1979) Inhibition of the spinal transmission of nociceptive information by supraspinal stimulation in the cat. Pain 6:149–161

    PubMed  CAS  Google Scholar 

  • Duggan AW, Morton CR (1983) Periaqueductal grey stimulation: an association between selective inhibition of dorsal horn neurones and changes in peripheral circulation. Pain 15:237–248

    PubMed  CAS  Google Scholar 

  • Edeson RO, Ryall RW (1983) Systematic mapping of descending inhibitory control by the medulla of nociceptive spinal neurones in cats. Brain Res 271:251–262

    PubMed  CAS  Google Scholar 

  • Elliott DF, Horton EW, Lewis GP (1960) Actions of pure bradykinin. J Physiol (Lond) 153:473–480

    PubMed  CAS  Google Scholar 

  • Emery DG, Foreman RD, Coggeshall RE (1976) Fiber analysis of the feline inferior cardiac sympathetic nerve. J Comp Neurol 166:457–468

    PubMed  CAS  Google Scholar 

  • Emery DG, Foreman RD, Coggeshall RE (1978) Categories of axons in the inferior cardiac nerve of the cat. J Comp Neurol 177:301–310

    PubMed  CAS  Google Scholar 

  • Fairman D (1979) Thalamic and hypothalamic simulation. In: Bonica JJ, Ventafridda (eds) Advances in pain research and therapy, vol 2. Raven, New York, pp 493–498

    Google Scholar 

  • Felder RB, Thames MD (1979) Interaction between cardiac receptors and sinoaortic baroreceptors in the control of efferent cardiac sympathetic nerve activity during myocardial ischemia in dogs. Cir Res 45:728–736

    CAS  Google Scholar 

  • Fields HL, Partridge LD, Winter DL (1970) Somatic and visceral receptive field properties of fibers in ventral quadrant white matter of the cat spinal cord. J Neurophysiol 33:827–837

    PubMed  CAS  Google Scholar 

  • Fields HL, Basbaum AI, Clanton CH, Anderson SD (1977) Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res 126:441–453

    PubMed  CAS  Google Scholar 

  • Floyd K (1979) Light microscopy of nerve endings in the atrial endocardium. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge University Press, Cambridge, UK, pp 3–26

    Google Scholar 

  • Foreman RD, Hancock MB, Willis WD (1981) Responses of spinothalamic tract cells in the thoracic spinal cord of the monkey to cutaneous and visceral inputs. Pain 11: 149–162

    PubMed  CAS  Google Scholar 

  • Foreman RD, Blair RW, Weber RN (1984) Viscerosomatic convergence onto T2-T4 spinoreticular, spinoreticular-spinothalamic and spinothalamic tract neurons in the cat. Exp Neurol 85:597–619

    PubMed  CAS  Google Scholar 

  • Foreman RD (1986) Spinal substrates for visceral pain. In: Yaksh TL (ed) Spinal afferent processing. Plenum, New York, pp 217–242

    Google Scholar 

  • Fox RE, Holloway JA, Iggo A, Mokha SS (1980) Spinothalamic neurones in the cat: some electrophysiological observations. Brain Res 182:186–190

    PubMed  CAS  Google Scholar 

  • Gerhart KD, Wilcox TK, Chung JM, Willis WD (1981a) Inhibition of nociceptive and non-nociceptive responses of primate spinothalamic cells by stimulation in medial brainstem. J Neurophysiol 45:121–136

    PubMed  CAS  Google Scholar 

  • Gerhart KD, Yezierski RP, Wilcox TK, Grossman AE, Willis WD (1981b) Inhibition of primate spinothalamic tract neurons by stimulation in ipsilateral or contralateral ventral posterior lateral (VPLC) thalamic nucleus. Brain Res 229:514–519

    PubMed  CAS  Google Scholar 

  • Gerhart KD, Yezierski RP, Fang ZR, Willis WD (1983) Inhibition of primate spinothalamic tract neurons by stimulation in the ventral posterior lateral (VPLC) thalamic nucleus: possible mechanisms. J Neurophysiol 49:406–423

    PubMed  CAS  Google Scholar 

  • Giesler GJ, Menétrey D, Guilbaud G, Besson JM (1976) Lumbar cord neurons at the origin of the spinothalamic tract in the rat. Brain Res 118:320–324

    PubMed  CAS  Google Scholar 

  • Giesler GJ, Menétrey D, Basbaum AI (1979) Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J Comp Neurol 184:107–126

    PubMed  Google Scholar 

  • Giesler GJ, Yezierski RP, Gerhart KD, Willis WD (1981) Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: evidence for a physiologically novel population of spinal cord neurons. J Neurophysiol 46:1285–1308

    PubMed  Google Scholar 

  • Girardot M-N, Brennan TJ, Ammons WS, Foreman RD (1987) Effects of stimulating the subcoeruleus-parabrachial region on the non-noxious and noxious responses of T2 — T4 spinothalamic tract neurons in the primate. Brain Res 409:19–30

    PubMed  CAS  Google Scholar 

  • Gokin AP, Kostyuk PG, Preobrazhensky NN (1977) Neuronal mechanisms of interactions of high-threshold visceral and somatic afferent influences in spinal cord and medulla. J Physiol (Paris) 73:319–333

    CAS  Google Scholar 

  • Grant G, Ygge J (1981) Somatotopic organisation of the thoracic spinal nerve in the dorsal horn demonstrated with transganglionic degeneration. J Comp Neurol 202:357–364

    PubMed  CAS  Google Scholar 

  • Guilbaud G, Oliveras JL, Giesler G Jr, Besson JM (1977) Effects induced by stimulation of the centralis inferior nucleus of the raphe on dorsal horn interneurons in cat’s spinal cord. Brain Res 126:355–360

    PubMed  CAS  Google Scholar 

  • Guzman F, Braun C, Lim RKS (1962) Visceral pain and the pseudaffective response to intra-arterial injection of bradykinin and other algesic agents. Arch Int Pharmacodyn Ther 136:353–383

    PubMed  CAS  Google Scholar 

  • Haber LH, Martin RF, Chatt AB, Willis WD (1978) Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey. Brain Res 153:163–168

    PubMed  CAS  Google Scholar 

  • Haber LH, Moore BD, Willis WD (1982) Electrophysiological response properties of spinoreticular neurons in the monkey. J Comp Neurol 207:75–84

    PubMed  CAS  Google Scholar 

  • Hammond DL, Proudfit HK (1980) Effects of locus coeruleus lesions on morphine-induced antinociception. Brain Res 188:79–91

    PubMed  CAS  Google Scholar 

  • Hampton AG, Beckwith JR, Wood JE Jr (1959) The relationship between heart disease and gallbladder disease. Ann Intern Med 50:1135–1148

    PubMed  CAS  Google Scholar 

  • Hancock MB, Fougerousse CL (1976) Spinal projections from the nucleus locus coeruleus and nucleus subcoeruleus in the cat and monkey as demonstrated by the retrograde transport of horseradish peroxidase. Brain Res Bull 1:229–234

    PubMed  CAS  Google Scholar 

  • Hancock MB, Foreman RD, Willis WD (1975) Convergence of visceral and cutaneous input onto spinothalamic tract cells in the thoracic spinal cord of the cat. Exp Neurol 47:240–248

    PubMed  CAS  Google Scholar 

  • Harrison TR, Reeves TJ (1968) Patterns and causes of chest pain. In: Principles and problems of ischemic heart disease. Year Book Medical Publishers, Chicago, pp 197–204

    Google Scholar 

  • Hashimoto K, Hirose M, Furukawa S, Haykawa H, Kimura E (1977) Changes in hemodynamics and bradykinin concentration in coronary sinus blood in experimental coronary artery occlusion. Jpn Heart J 18:679–689

    PubMed  CAS  Google Scholar 

  • Hayes NL, Rustioni A (1980) Spinothalamic and spinomedullary neurons in macaques: a single and double retrograde tracer study. Neuroscience 5:861–874

    PubMed  CAS  Google Scholar 

  • Hayes RL, Price DD, Ruda M, Dubner R (1979) Suppression of nociceptive responses in the primate by electrical stimulation of the brain or morphine administration: behavioral and electrophysiological comparisons. Brain Res 167:417–421

    PubMed  CAS  Google Scholar 

  • Henderson RD, Wigle HD, Sample K, Manyat G (1978) Atypical chest pain of cardiac and esophageal origin. Chest 73:24–41

    PubMed  CAS  Google Scholar 

  • Hess GL, Zuperku EJ, Coon RL, Kampine JP (1974) Sympathetic afferent nerve activity of left ventricular origin. Am J Physiol 227:543–546

    PubMed  CAS  Google Scholar 

  • Hodge GB, Messer AL, Hill H (1947) Effect of distension of the biliary tract on the electrocardiogram. Arch Surg 55:710–722

    PubMed  CAS  Google Scholar 

  • Holmes RL (1957) Structures in the arterial endocardium of the dog which stain with methylene blue, and the effects of unilateral vagotomy. J Anat 91:259–266

    PubMed  CAS  Google Scholar 

  • Hylden JLK, Hayashi H, Bennett GJ, Dubner R (1985) Spinal lamina I neurons projecting to the parabrachial area of the cat midbrain. Brain Res 336:195–198

    PubMed  CAS  Google Scholar 

  • Johnston BD (1968) Nerve endings in the human endocardium. Am J Anat 122:621–629

    PubMed  CAS  Google Scholar 

  • Jones EG, Burton H (1974) Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J Comp Neurol 154:395–432

    PubMed  CAS  Google Scholar 

  • Jones MW, Hodge DJ Jr, Apkarian AV, Stevens RT (1985) A dorsolateral spinothalamic pathway in cat. Brain Res 335:188–193

    PubMed  CAS  Google Scholar 

  • Katayama Y, Watkins LR, Becker DP, Hayes RL (1984a) Evidence for involvement of cholinoceptive cells of the parabrachial region in environmentally induced nociceptive suppression in the cat. Brain Res 229:348–353

    Google Scholar 

  • Katayama Y, Watkins LR, Becker DP, Hayes RL (1984b) Non-opiate analgesia induced by carbachol microinjection into the pontine parabrachial region of the cat. Brain Res 296:262–283

    Google Scholar 

  • Kaufman MP, Baker DG, Coleridge HM, Coleridge JC (1980) Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res 46:476–484

    PubMed  CAS  Google Scholar 

  • Keele CA, Armstrong D (1969) Substances producing pain and itch. Arnold, London

    Google Scholar 

  • Kerr FWL (1975) The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J Comp Neurol 159:335–356

    PubMed  CAS  Google Scholar 

  • Kerr FWL, Lippman HH (1974) The primate spinothalamic tract as demonstrated by anterolateral cordotomy and comissural myelotomy. Adv Neurol 4:147–156

    Google Scholar 

  • Kevetter GA, Willis WD (1983) Collaterals of spinothalamic cells in the rat. J Comp Neurol 215:453–464

    PubMed  CAS  Google Scholar 

  • Kevetter GA, Haber LH, Yezierski RP, Chung JM, Martin RF, Willis WD (1982) Cells of origin of the spinoreticular tract in the monkey. J Comp Neurol 207:61–74

    PubMed  CAS  Google Scholar 

  • Kezdi P, Kordenat RK, Misra SN (1974) Reflex inhibitory effects of vagal afferents in experimental myocardial infarction. Am J Cardiol 33:853–860

    PubMed  CAS  Google Scholar 

  • Khabarova AY (1963) The afferent innervation of the heart. Consultants Bureau, New York

    Google Scholar 

  • Kimura E, Hashimoto K, Furukawa S, Hayakawa H (1973) Changes in bradykinin level in coronary sinus blood after the experimental occlusion of coronary artery. Am Heart J 85:635–647

    PubMed  CAS  Google Scholar 

  • Kostreva DR, Zuperku EJ, Purtock RV, Coon RL, Kampine JP (1975) Sympathetic afferent nerve activity of right heart origin. Am J Physiol 229:911–915

    PubMed  CAS  Google Scholar 

  • Kostreva DR, Hess GL, Zuperku EJ, Neumark J, Coon RL, Kampine JP (1976) Cardiac responses to stimulation of thoracic afferents in the primate and canine. Am J Physiol 231:1279–1284

    PubMed  CAS  Google Scholar 

  • Kuo DC, Krauthamer GM, Yamasaki DS (1981) The organization of visceral sensory neurones in the thoracic dorsal root ganglia (DRG) of the cat studied by horseradish peroxidase reaction using the cryostat. Brain Res 208:187–191

    PubMed  CAS  Google Scholar 

  • Kuo DC, Oravitz JJ, de Groat WC (1984) Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using retrograde and transport of horseradish peroxidase. Brain Res 321:111–118

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM, Maiski VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1:9–14

    PubMed  CAS  Google Scholar 

  • Lewis T (1942) Pain. Macmillan, New York

    Google Scholar 

  • Liebeskind JC, Guibaud G, Besson JM, Oliveras J-L (1973) Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons. Brain Res 50:441–446

    PubMed  CAS  Google Scholar 

  • Lim KS, Guzman F (1968) Manifestations of pain in analgesic evaluation in animals and man. In: Soulairac A, Cohn J, Charpentier J (eds) Pain. Academic, London, pp 119–152

    Google Scholar 

  • Lindgren I, Olivecrona H (1947) Surgical treatment of angina pectoris. J Neurosurg 4:19–39

    PubMed  CAS  Google Scholar 

  • Lombardi F, Delia Bella P, Casati R, Malliani A (1981) Effects of intracoronary administration of bradykinin on the impulse activity of afferent sympathetic unmyelinated fibers with left ventricular endings in the cat. Circ Res 48:69–75

    PubMed  CAS  Google Scholar 

  • Longhurst JC (1984) Cardiac receptors: their function in health and disease. Prog in Cardiovasc Dis 27:201–222

    CAS  Google Scholar 

  • MacKenzie J (1909) Symptoms and their interpretation. Shaw, London

    Google Scholar 

  • Maixner W, Randich A (1984) Role of the right vagal nerve trunk in antinociception. Brain Res 298:374–377

    PubMed  CAS  Google Scholar 

  • Maixner W, Touw KB, Brody MJ, Gebhart GF, Long JP (1982) Factors regulating the altered pain perception in the spontaneously hypertensive rat. Brain Res 237:137–145

    PubMed  CAS  Google Scholar 

  • Malliani A (1982) Cardiovascular and sympathetic afferent fibers. Rev Physiol Biochem Pharmacol 94:11–74

    Google Scholar 

  • Malliani A (1986) The elusive link between transient myocardial ischemia and pain. Circulation 73:201–204

    PubMed  CAS  Google Scholar 

  • Malliani A, Peterson DF, Bishop VS, Brown AM (1972) Spinal sympathetic cardiocardiac reflexes. Circ Res 30:158–166

    PubMed  CAS  Google Scholar 

  • Malliani A, Parks M, Tuckett RP, Brown AM (1973a) Reflex increases in heart rate elicited by stimulation of afferent cardiac sympathetic nerve fibers in the cat. Circ Res 32:9–14

    PubMed  CAS  Google Scholar 

  • Malliani A, Recordati G, Schwartz PJ (1973 b) Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. J Physiol (Lond) 229:457–469

    PubMed  CAS  Google Scholar 

  • Malliani A, Lombardi F, Pagani M, Recordati G, Schwartz PJ (1975) Spinal cardiovascular reflexes. Brain Res 87:239–246

    PubMed  CAS  Google Scholar 

  • Margolis JR, Kannel WS, Feinleib M, Dawber TR, McNamara PW (1973) Clinical features of unrecognized myocardial infarction silent and symptomatic. Eighteen year followup: the Framingham study. Am J Cardiol 32:1–7

    PubMed  CAS  Google Scholar 

  • Maseri A, Chierchia S (1982) Coronary artery spasm: demonstration, definition, diagnosis and consequences. Prog Cardiovasc Dis 25:169–192

    PubMed  CAS  Google Scholar 

  • Master AM, Geller AJ (1969) The extent of completely asymptomatic coronary artery disease. Am J Cardiol 23:173–179

    PubMed  CAS  Google Scholar 

  • Mayanagi Y, Sano K, Suzuki I, Kanazawa I, Aoyagi I, Miyachi Y (1982) Stimulation and coagulation of the posteriomedial hypothalamus for intractable pain, with reference to β-endorphins. Appl Neurophysiol 45:136–142

    PubMed  CAS  Google Scholar 

  • Mazars GJ, Merienne L, Cioloca C (1979) Comparative study of electrical stimulation of posterior thalamic nuclei, periaqueductal gray and other midline mesencephalic structures in man. In: Bonica JJ, Liebeskind JC, Albe-Fessard D (eds) Advances in pain research and therapy, vol 3. Raven, New York, pp 541–546

    Google Scholar 

  • McCreery DB, Bioedel JR (1975) Reduction of the response of cat spinothalamic neurons to graded mechanical stimuli by electrical stimulation of the lower brain stem. Brain Res 97:151–156

    PubMed  CAS  Google Scholar 

  • McCreery DB, Bloedel JR, Hames EG (1979) Effects of stimulating in raphe nuclei and in reticular formation on response of spinothalamic neurons to mechanical stimuli. J Neurophysiol 42:166–182

    PubMed  CAS  Google Scholar 

  • Mehler WR (1962) The anatomy of the so-called ‘pain tract’ in man: an analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In: French JD, Porter RW (eds) Basic research in paraplegia. Thomas, Springfield, pp 26–55

    Google Scholar 

  • Mehler WR (1969) Some neurological species differences — a posteriori. Ann NY Acad Sci 167:424–468

    Google Scholar 

  • Mehler WR, Feferman ME, Nauta WJH (1960) Ascending axon degenerating following anterolateral cordotomy. An experimental study in the monkey. Brain 83:718–751

    PubMed  CAS  Google Scholar 

  • Melzack R, Casey KL (1968) Sensory, motivational and central control determinants of pain. In: Kenshalo D (ed) The skin senses. Thomas, Springfield, pp 423–443

    Google Scholar 

  • Melzack R, Wall PD (1982) The challenge of pain. Basic Books, New York

    Google Scholar 

  • Menétrey D, Babaum AI (1987) Spinal and trigeminal projections to the nucleus of the solitary tract: A possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255:439–450

    PubMed  Google Scholar 

  • Menétery D, Chaouch A, Besson JM (1980) Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat. J Neurophysiol 44:862–877

    Google Scholar 

  • Menétrey D, Chaouch A, Binder D, Besson JM (1982) The origin of the spinomesen-cephalic tract in the rat: an anatomical study using the retrograde transport of horseradish peroxidase. J Comp Neurol 206:193–207

    PubMed  Google Scholar 

  • Meyerson BA, Boëthius J, Carlsson AM (1979) Alleviation of malignant pain by electricalstimulation in the periventricular-periaqueductal region: pain relief as related to stimulation sites. In: Bonica JJ, Liebeskind JC, Albe-Fessard D (eds) Advances in pain research and therapy, vol 3. Raven, New York, pp 525–533

    Google Scholar 

  • Meyling HA (1953) Structure and significance of the peripheral extension of the autonomic nervous system. J Comp Neurol 99:495–543

    PubMed  CAS  Google Scholar 

  • Miller HR (1942) The interrelationship of disease of coronary arteries and gallbladder. Am Heart J 24:579–587

    Google Scholar 

  • Miller MR, Kasahara M (1964) Studies on the nerve endings in the heart. Am J Anat 115:217–233

    PubMed  CAS  Google Scholar 

  • Milne RJ, Foreman RD, Giesler GJ, Willis WD (1981) Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons. Pain 11: 163–183

    PubMed  CAS  Google Scholar 

  • Mitchell GAG (1953) The innervation of the heart. Br Heart J 15:159–171

    PubMed  CAS  Google Scholar 

  • Morgan C, de Groat WC, Nadelhaft I (1986) The spinal distribution of sympathetic preganglionic and visceral primary afferent neurons that send axons into the hypogastric nerves of the cat. J Comp Neurol 243:23–40

    PubMed  CAS  Google Scholar 

  • Mraovitch S, Kamada M, Reis DJ (1982) Role of the nucleus parabrachialis in cardiovascular regulation in cat. Brain Res 232:57–75

    PubMed  CAS  Google Scholar 

  • Muers MF, Sleight P (1972) Action potentials from ventricular mechanoreceptors stimulated by occlusion of the coronary sinus in the dog. J Physiol (Lond) 221:283–309

    PubMed  CAS  Google Scholar 

  • Nadelhaft I, Roppolo J, Morgan C, de Groat WC (1983) Parasympathetic preganglionic neurones and visceral primary afferent in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J Comp Neurol 216:36–52

    PubMed  CAS  Google Scholar 

  • Needleman P (1976) The synthesis and function of prostaglandins in the heart. Fed Proc 35:2376–2381

    PubMed  CAS  Google Scholar 

  • Nerdrum T, Baker DG, Coleridge HM, Coleridge JCG (1986) Interaction of bradykinin and prostaglandin E1 on cardiac pressor reflex and sympathetic afferents. Am J Physiol 250:R815–R822

    PubMed  CAS  Google Scholar 

  • Nettleship WA (1936) Experimental studies on the afferent innervation of the cat’s heart. J Comp Neurol 64:115–131

    Google Scholar 

  • Neuhuber W (1982) The central projections of visceral primary afferent neurones of the inferior mesenteric plexus and hypogastric nerve and the location of the related sensory and preganglionic sympathetic cell bodies in the rat. Anat Embryol (Berl) 164:413–425

    PubMed  CAS  Google Scholar 

  • Nishi K, Sakanashi M, Takenaka F (1977) Activation of afferent cardiac sympathetic nerve fibers of the cat by pain producing substances and by noxious heat. Pflugers Arch 372:53–61

    PubMed  CAS  Google Scholar 

  • Nonidez JF (1939) Studies on the innervation of the heart. I. Distribution of the cardiac nerves, with special reference to the identification of the sympathetic and parasympathetic postganglionics. Am J Anat 68:361–413

    Google Scholar 

  • Oberg B, Thorén P (1973) Circulatory responses to stimulation of medullated and non-medulated afferents in the cardiac nerve in the cat. Acta Physiol Scand 87:121–132

    PubMed  CAS  Google Scholar 

  • Oldfield BJ, McLachlan EM (1978) Localization of sensory neurons traversing the stellate ganglion of the cat. J Comp Neurol 182:915–922

    PubMed  CAS  Google Scholar 

  • Oliveras JL, Besson JM, Guilbaud G, Liebeskind JC (1974) Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Exp Brain Res 20:32–44

    PubMed  CAS  Google Scholar 

  • Ordway GA, Longhurst JC (1983) Cardiovascular reflexes arising from the gallbladder of the cat: effects of capsaicin, bradykinin, and distension. Circ Res 52:26–35

    PubMed  CAS  Google Scholar 

  • Pagani M, Schwartz PJ, Banks R, Lombardi F, Malliani A (1974) Reflex responses of sympathetic preganglionic neurones initiated by different cardiovascular receptors in spinal animals. Brain Res 68:215–225

    PubMed  CAS  Google Scholar 

  • Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53: 159–227

    PubMed  CAS  Google Scholar 

  • Palmer ED (1958) Chest pain of colon origin. Gastroenterologia 90:15–21

    PubMed  CAS  Google Scholar 

  • Pearson JC, Haines DE (1980) Somatosensory thalamus of a prosimian primate (Galago senegalensis) I. Configuration of nuclei and termination of spinothalamic fibers. J Comp Neurol 190:533–558

    PubMed  CAS  Google Scholar 

  • Peterson DF, Brown AM (1971) Pressor reflexes produced by stimulation of afferent fibers in cardiac sympathetic nerves of the cat. Circ Res 28:605–610

    PubMed  CAS  Google Scholar 

  • Pomeranz B, Wall PD, Weber WV (1968) Cord cells responding to fine myelinated afferents from viscera, muscle and skin. J Physiol (Lond) 199:511–532

    PubMed  CAS  Google Scholar 

  • Price DD, Dubner R (1977) Neurons that subserve the sensory-discriminative aspects of pain. Pain 3:307–338

    PubMed  CAS  Google Scholar 

  • Price DD, Mayer DJ (1974) Physiological laminar organization of the dorsal horn of M. mullata. Brain Res 79:321–325

    PubMed  CAS  Google Scholar 

  • Price DD, Hayes RL, Ruda MA, Dubner R (1978) Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J Neurophysiol 41:933–947

    PubMed  CAS  Google Scholar 

  • Purtock RV, von Colditz JH, Seagard JL, Igler FO, Zuperku EJ, Kampine JP (1977) Reflex effects of thoracic sympathetic afferent nerve stimulation on the kidney. Am J Physiol 233:H580-H586

    PubMed  CAS  Google Scholar 

  • Randall DC, Hasson DM, Brady JV (1978) Acute cardiovascular consequences of anterior descending coronary artery occlusion in unanesthetized monkey. Proc Soc Exp Biol Med 58:135–140

    Google Scholar 

  • Randich A, Simpson TA, Hanger PA, Fisher RL (1984) Activation of vagal afferents by veratrine induces antinociception. Physiol Psychol 12:293–301

    CAS  Google Scholar 

  • Ravdin IS, Royster HP, Sanders GB (1942) Reflexes originating in the common duct giving rise to pain simulating angina pectoris. Ann Surg 115:1055–1062

    PubMed  CAS  Google Scholar 

  • Ravdin IS, Fitz-Hugh T Jr, Wolferth CC, Barbieri EA, Ravdin RG (1955) Relation of gallstone disease to angina pectoris. Arch Surg 70:333–342

    CAS  Google Scholar 

  • Richardson DE, Akil H (1977 a) Pain reduction by electrical brain stimulation in man. Part 1: acute administration in periaqueductal and periventricular sites. J Neurosurg 47:178–183

    PubMed  CAS  Google Scholar 

  • Richardson DE, Akil H (1977b) Pain reduction by electrical brain stimulation in man. Part 2: chronic self-administration in the periventricular gray matter. J Neurosurg 47:184–194

    PubMed  CAS  Google Scholar 

  • Rivot JP, Chaouch A, Besson JM (1980) Nucleus raphe magnus modulation of response of rat dorsal horn neurons to unmyelinated fiber inputs: partial involvement of serotonergic pathways. J Neurophysiol 44:1039–1057

    PubMed  CAS  Google Scholar 

  • Ruch TC (1961) Pathophysiology of pain. In: Ruch TC, Patton HD, Woodbury JW, Towe AL (eds) Neurophysiology. Saunders, Philadelphia

    Google Scholar 

  • Rutishauser W, Roskamm H (1984) Silent myocardial ischemia. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schwanzel-Fukuda M, Morrell JI, Pfaff DW (1984) Localization of forebrain neurons which project directly to the medulla and spinal cord of the rat by retrograde tracing with wheat germ agglutenin. J Comp Neurol 226:1–20

    PubMed  CAS  Google Scholar 

  • Schwartz PJ, Pagani M, Lombardi F, Malliani A, Brown AM (1973) A cardiocardiac sympathovagal reflex in the cat. Cir Res 32:215–220

    CAS  Google Scholar 

  • Seagard JL, Pederson HJ, Kostreva DR, Van Horn DL, Cusik JF, Kampine JP (1978) Ultrastructural identification of afferent fibers of cardiac origin in thoracic sympathetic nerves in the dog. Am J Anat 153:217–232

    PubMed  CAS  Google Scholar 

  • Sleight P, Widdicombe JG (1965) Action potentials in fibres from receptors in the epicardium and myocardium of the dog’s left ventricle. J Physiol (Lond) 181:235–258

    PubMed  CAS  Google Scholar 

  • Smith CL (1983) The development and post-natal organisation of primary afferent projections to the rat thoracic spinal cord. J Comp Neurol 220:29–43

    PubMed  CAS  Google Scholar 

  • Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194:555–570

    PubMed  CAS  Google Scholar 

  • Swett JE, McMahon SB, Wall PD (1985) Long ascending projections to the midbrain from cells of lamina I and nucleus of the dorsolateral funiculus of the rat spinal cord. J Comp Neurol 238:401–416

    PubMed  CAS  Google Scholar 

  • Szabo J, Cowan WMA (1984) A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis). J Comp Neurol 222:265–300

    PubMed  CAS  Google Scholar 

  • Takeuchi Y, Uemura M, Matsuda K, Matsushima R, Mizuno N (1980) Parabrachial nucleus neurons projecting to the lower brainstem and the spinal cord. A study in the cat by the Fink-Heimer and the horseradish peroxidase methods. Exp Neurol 70:403–413

    PubMed  CAS  Google Scholar 

  • Tattersall JEH, Cervero F, Lumb BM (1986 a) Viscerosomatic neurons in the lower thoracic spinal cord of the cat: excitations and inhibitions evoked by splanchnic and somatic nerve volleys and by stimulation of brain stem nuclei. J Neurophysiol 56(5):1411–1423

    PubMed  CAS  Google Scholar 

  • Tattersall JEH, Cervero F, Lumb BM (1986b) Effects of reversible spinalization on the visceral input to viscerosomatic neurons in the lower thoracic spinal cord of the cat. J Neurophysiol 56:785–796

    PubMed  CAS  Google Scholar 

  • Thames MD, Abboud FM (1979) Inhibition of renal sympathetic nerve activity during myocardial ischemia mediated by left ventricular receptors with vagal afferents in dogs. J Clin Invest 63:395–402

    PubMed  CAS  Google Scholar 

  • Thames MD, Donald DE, Shepherd JT (1977) Behavior of cardiac receptors with nonmyelinated vagal afferents during spontaneous respiration in cats. Circ Res 41:694–701

    PubMed  CAS  Google Scholar 

  • Thames MD, Klopfenstein HS, Abboud FM, Mark AL, Walker JL (1978) Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res 43:512–519

    PubMed  CAS  Google Scholar 

  • Thorén P (1976) Atrial receptors with non-medullated vagal afferents in the cat: discharge frequency and pattern in relation to atrial pressure. Circ Res 38:357–362

    PubMed  Google Scholar 

  • Thorén PN (1977) Characteristics of left ventricular receptors with nonmedullated vagal afferents in cats. Circ Res 40:415–421

    PubMed  Google Scholar 

  • Thorén P (1979) Role of cardiac vagal C-fibers in cardiovascular control. Rev Physiol Biochem Pharmacol 86:1–94

    PubMed  Google Scholar 

  • Thorén PN, Donald DE, Shepherd JT (1976) Role of heart and lung receptors with nonmedullated vagal afferents in circulatory control. Circ Res 38 (Suppl II):2–9

    PubMed  Google Scholar 

  • Trevino DL (1976) The origin and projections of a spinal nociceptive and thermoreceptive pathway. In Zotterman Y (ed) Sensory functions of the skin. Pergamon, pp 367–377

    Google Scholar 

  • Trevino DL, Maunz RA, Bryan RN, Willis WD (1972) Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp Neurol 34:64–77

    PubMed  CAS  Google Scholar 

  • Trevino DL, Coulter JD, Willis WD (1973) Location of cells of origin of spinothalamic tract in lumbar enlargement of the monkey. J Neurophysiol 36:750–761

    PubMed  CAS  Google Scholar 

  • Uchida Y (1975) Afferent sympathetic nerve fibers with mechanoreceptors in the right heart. Am J Physiol 228:223–230

    PubMed  CAS  Google Scholar 

  • Uchida Y, Murao S (1974 a) Potassium-induced excitation of afferent cardiac sympathetic nerve fibers. Am J Physiol 226:603–607

    PubMed  CAS  Google Scholar 

  • Uchida Y, Murao S (1974b) Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am J Physiol 226:1094–1099

    PubMed  CAS  Google Scholar 

  • Uchida Y, Murao S (1974 c) Afferent sympathetic nerve fibers originating in the left atrial wall. Am J Physiol 227:753–758

    PubMed  CAS  Google Scholar 

  • Uchida Y, Murao S (1974d) Bradykinin-induced excitation of afferent cardiac sympathetic nerve fibers. Jpn Heart J 15:84–91

    PubMed  CAS  Google Scholar 

  • Uchida Y, Murao S (1975) Acid-induced excitation of afferent cardiac sympathetic nerve fibers. Am J Physiol 228:27–33

    PubMed  CAS  Google Scholar 

  • Uchida Y, Kamisaka K, Murao S, Ueda H (1974) Mechanosensitivity of afferent cardiac sympathetic nerve fibers. Am J Physiol 226:1088–1093

    PubMed  CAS  Google Scholar 

  • Ueda H, Uchida Y, Kamisaka K (1969) Distribution and responses of the cardiac sympathetic receptors to mechanically induced circulatory changes. Jpn Heart J 10:70–81

    PubMed  CAS  Google Scholar 

  • Vance WH, Bowker RC (1983) Spinal origins of cardiac afferents from the region of the left anterior descending artery. Brain Res 258:96–100

    Google Scholar 

  • Von Euler C (1986) Brain stem mechanisms for generation and control of breathing pattern. In: Fishman AP (ed) Handbook of physiology, sect 3, The respiratory system, vol II. Williams and Wilkins, Baltimore, Maryland, pp 1–67

    Google Scholar 

  • Walker AE (1940) The spinothalamic tract in man. Archs Neurol Psychiat 43:284–298

    Google Scholar 

  • Walker JL, Thames MD, Abboud FM, Mark AL, Klopfenstein HS (1978) Preferential distribution of inhibitory cardiac receptors in left ventricle of the dog. Am J Physiol 235:H188-H192

    PubMed  CAS  Google Scholar 

  • Weaver LC (1977) Cardiopulmonary sympathetic afferent influences on renal nerve activity. Am J Physiol 233:H592-H599

    PubMed  CAS  Google Scholar 

  • Webb SW, Adgey AA, Pantridge JF (1972) Autonomic disturbances at onset of acute myocardial infarction. Br Med J [Clin Res] 3:89–92

    PubMed  CAS  Google Scholar 

  • Wehrmacher EH (1964) Pains in the chest. Thomas, Springfield, II, pp 342–361

    Google Scholar 

  • Westlund KN, Coulter JD (1980) Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in the monkey: axonal transport studies and dopamine-β-hydroxylase neurocytochemistry. Brain Res Rev 2:235–264

    CAS  Google Scholar 

  • Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1984) Origins and terminations of descending noradrenergic projections to the spinal cord of the monkey. Brain Res 292:1–16

    PubMed  CAS  Google Scholar 

  • White JC (1957) Cardiac pain. Anatomic pathways and physiologic mechanisms. Circulation 16:644–655

    PubMed  CAS  Google Scholar 

  • White JC, Bland EF (1948) The surgical relief of severe angina pectoris. Medicine (Baltimore) 27:1–42

    PubMed  CAS  Google Scholar 

  • White JC, Garrey WE, Atkins JA (1933) Cardiac innervation: experimental and clinical studies. Arch Surg 26:765–786

    Google Scholar 

  • Willis WD (1985) The pain system — The neural basis of nociceptive transmission in the mammalian nervous system. Karger, Basel, pp 145–212

    Google Scholar 

  • Willis WD, Trevino DL, Coulter JD, Maunz RA (1974) Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J Neurophysiol 37:358–372

    PubMed  CAS  Google Scholar 

  • Willis WD, Haber LH, Martin RF (1977) Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey. J Neurophysiol 40:968–981

    PubMed  CAS  Google Scholar 

  • Willis WD, Kenshalo DR, Leonard RB (1979) The cells of origin of the primate spinothalamic tract. J Comp Neurol 188:543–574

    PubMed  CAS  Google Scholar 

  • Woollard HH (1926) The innervation of the heart. J Anat 60:345–373

    PubMed  CAS  Google Scholar 

  • Yezierski RP, Schwartz RH (1986) Response and receptive-field properties of spino-mesencephalic tract cells in the cat. J Neurophys 55:76–96

    CAS  Google Scholar 

  • Yezierski RP, Gerhart KD, Schrock BJ, Willis WD (1983) A further examination of effects of cortical stimulation on primate spinothalamic tract cells. J Neurophysiol 49:424–441

    PubMed  CAS  Google Scholar 

  • Ygge J, Grant G (1983) The organisation of the thoracic spinal nerve projection in the rat dorsal horn demonstrated with transganglionic transport of horseradish peroxidase. J Comp Neurol 216:1–9

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Foreman, R.D. (1989). Organization of the Spinothalamic Tract as a Relay for Cardiopulmonary Sympathetic Afferent Fiber Activity. In: Autrum, H., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D., Ottoson, D. (eds) Progress in Sensory Physiology 9. Progress in Sensory Physiology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74058-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74058-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74060-2

  • Online ISBN: 978-3-642-74058-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics