Skip to main content

Skin Cancer (Excluding Melanomas)

  • Chapter
Pharmacology of the Skin II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 87 / 2))

Abstract

In human medicine, cancer of the skin is of outstanding importance for two reasons:

  1. 1.

    1. Among whites, epidermal cell carcinoma is by far the commenest form of malignant neoplasia, equaling in number of cases the incidence of all other cancer types combined; fortunately, skin carcinomas are also the easiest to prevent and to treat.

  2. 2.

    Human skin cancer was the first neoplastic disease shown to be caused by environmental influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrade R, Gumpert SL, Popkin GL, Rees TD (eds) (1976) Cancer of the skin. Saunders, Philadelphia

    Google Scholar 

  • Ashendel CL (1985) The phorbol ester receptor: a phospholipid-regulated protein kinase. Biochim Biophys Acta 822:219–242

    PubMed  CAS  Google Scholar 

  • Balmain A, Brown K (1988) Oncogene activation in chemical carcinogenesis. Adv Cancer Res 51:147–183

    Article  PubMed  CAS  Google Scholar 

  • Berenblum I (1941) The cocarcinogenic action of croton resin. Cancer Res 1:44–48

    CAS  Google Scholar 

  • Berenblum I, Haran-Ghera N (1957) A quantitative study of the systemic initiating action of urethan (ethyl carbamate) in mouse skin carcinogenesis. Br J Cancer 11:77–84

    Article  PubMed  CAS  Google Scholar 

  • Berenblum I, Shubik P (1947) A new, quantitative approach to the study of stages of chemical carcinogenesis in mouse skin. Br J Cancer 1:383–391

    Article  PubMed  CAS  Google Scholar 

  • Bickers DR (1983) Drug, carcinogen, and steroid hormone metabolism in the skin. In: Goldsmith LA (ed) Biochemistry and physiology of the skin. Oxford University Press, New York, pp 1169–1186

    Google Scholar 

  • Bigger CAH, Sawicki JT, Blake DM, Raymond LG, Dipple A (1983) Products of binding of 7,12-dimethylbenz[a]anthracene to DNA in mouse skin. Cancer Res 43:5647–5651

    PubMed  CAS  Google Scholar 

  • Blumberg P (1980) In vitro studies on the mode of action of the phorbol esters, potent tumor promoters. CRC Crit Rev Toxicol 8:153–234

    Article  CAS  Google Scholar 

  • Bootsma D, Zelle B, Keijzer W (1979) Deficient DNA repair in xeroderma pigmentosum. Stud Biophys 76:177–184

    Google Scholar 

  • Boutwell RK (1964) Some biological aspects of skin carcinogenesis. Progr Exp Tumor Res 4:207–250

    PubMed  CAS  Google Scholar 

  • Boutwell RK (1974) The function and mechanism of promoters of carcinogenesis. CRC Crit Rev Toxicol 2:419–443

    Article  PubMed  CAS  Google Scholar 

  • Burns FJ, Vanderlaan M, Snyder E, Albert RE (1978) Induction and progression kinetics of mouse skin papillomas. In: Slaga TJ, Sivak A, Boutwell RK (eds) Mechanisms of tumor promotion and cocarcinogenesis. Raven, New York, pp 91–96

    Google Scholar 

  • Burns FJ, Albert RE, Altshuler B (1984) Cancer progression in mouse skin. In: Slaga TJ (ed) Mechanism of tumor promotion, vol II. CRC, Boca Raton Fl, pp 18–39

    Google Scholar 

  • Camerman N, Camerman A (1968) Photodimer of thymine in ultraviolet-irradiated DNA: proof of structure by X-ray diffraction. Science 160:1451

    Article  PubMed  CAS  Google Scholar 

  • Carter DM, Ross PM (1983) Cutaneous DNA damage and repair. In: Goldsmith LA (ed) Biochemistry and physiology of skin. Oxford University Press, New York, pp 292–317

    Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa V, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent proteinkinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851

    PubMed  CAS  Google Scholar 

  • Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227:375–381

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE (1968) Defective repair of DNA in xeroderma pigmentosum. Nature 218:652–656

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE (1972) Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to UV light. J Invest Dermatol 58:124–128

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE, Trosko JE (1970) Absence of excision of UV-induced cyclobutane dimers in xeroderma pigmentosum. Photochem Photobiol 11:547–550

    Article  PubMed  CAS  Google Scholar 

  • Colburn NH (1979) The use of tumor promoter responsive experimental cell lines to study preneoplastic progression. In: Franks LM, Wigley CB (eds) Neoplastic transformation in differentiated epithelial cell systems in vitro. Pergamon, London, pp 112–134

    Google Scholar 

  • Committee on the Biological Effects of Ionizing Radiation, Division of Medical Sciences, Assembly of Life Sciences and National Research Council (1980) The effects on populations of exposure to low levels of ionizing radiation. National Academy of Sciences of the United States of America, Washington DC

    Google Scholar 

  • Cooper CS, Ribeiro O, Hewer A, Walsh C, Grover PL, Sims P (1980) Additional evidence for the involvement of the 3,4-diol-l,2-oxides in the metabolic activation of 7,12-DMBA in mouse skin. Chem Biol Interact 29:357–367

    Article  PubMed  CAS  Google Scholar 

  • Cuiffo G (1907) Innesto positivo con filtrate di verruca volgare. Ital Mal Vener 48:12–17

    Google Scholar 

  • Deelman HT (1924) Die Entstehung des experimentellen Teerkrebses und die Bedeutung der Zellregeneration. Z Krebsforsch 21:220–226

    Article  Google Scholar 

  • Diamond L, O’Brien TG, Baird WM (1980) Tumor promoters and the mechanism of tumor promotion. Adv Cancer Res 32:1–74

    Article  PubMed  CAS  Google Scholar 

  • DiGiovanni J, Juchau MR (1980) Biotransformation and bioactivation of 7,12-dimethyl-benz[a]anthracene (7,12-DMBA). Drug Metab Rev 11:61–101

    Article  PubMed  CAS  Google Scholar 

  • DiGiovanni J, Slaga TJ, Berry DL, Juchau MR (1980) Inhibitory effects of environmental chemicals on polycyclic aromatic hydrocarbon carcinogenesis. In: Slaga TJ (ed) Modifiers of chemical carcinogenesis. Raven, New York, pp 145–168

    Google Scholar 

  • Doniger J, Jacobson ED; Krell K, DiPaolo JA (1981) UV-light action spectra for neoplastic transformation, and lethality of Syrian hamster embryo cells correlate with that for pyrimidine dimer formation in cellular DNA. Proc Natl Acad Sci USA 78:2378–2382

    Article  PubMed  CAS  Google Scholar 

  • Fischer E, Keijzer W, Thielmann HW, Popanda O, Bohnert A, Edler L, Jung EG, Bootsma D (1985) A ninth complementation group in xeroderma pigmentosum. Mutat Res 145:217–225

    PubMed  CAS  Google Scholar 

  • Fischer SM (1984) The role of prostaglandins in tumor promotion. In: Slaga TJ (ed) mechanisms of tumor promotion, vol II. CRC, Boca Raton, FL, pp 113–126

    Google Scholar 

  • Fischer SM, Slaga TJ (eds) (1985) Arachidonic acid metabolism and tumor promotion. Nijhoff, Boston

    Google Scholar 

  • Fischer SM, Fürstenberger G, Marks F, Slaga TJ (1987) Events associated with mouse skin tumor promotion with respect to arachidonic acid metabolism: A comparison between Sencar and NMRI mice, Cancer Res 87:3174–3179

    Google Scholar 

  • Foulds L (1954) The experimental study of tumor progression: a review. Cancer Res 14:327–339

    PubMed  CAS  Google Scholar 

  • Foulds L (1975) Neoplasia of the skin. In: Foulds L, Neoplastic development, vol III. Academic Press, London, pp 17–108

    Google Scholar 

  • Frieben A (1902) Demonstration eines Cancroids des rechten Handrückens, das sich nach langdauernder Einwirkung von Röntgenstrahlen entwickelt hat. Fortschr Röntgenstr 6:106–111

    Google Scholar 

  • Friedberg EC (1985) DNA repair. Freeman, New York

    Google Scholar 

  • Friedwald WF, Rous P (1944) The initiating and promoting elements in tumor production. J Exp Med 80:102–125

    Google Scholar 

  • Fry RJM, Ley RD (1984) Ultraviolet radiation carcinogenesis. In: Slaga TJ (ed) Mechanisms of tumor promotion, vol II. Tumor promotion and skin carcinogenesis, pp 74–96. CRC, Boca Raton

    Google Scholar 

  • Fürstenberger G, Hecker E (1986) Highly unsaturated irritant diterpene esters from Euphorbia tirucalli L. originating from Madagascar. J Nat Prod 49:386–398

    Article  PubMed  Google Scholar 

  • Fürstenberger G, Marks F (1983) Growth stimulation and tumor promotion in skin. J Invest Dermatol 81:157s-161s

    Article  PubMed  Google Scholar 

  • Fürstenberger G, Marks F (1985) Prostaglandins, epidermal hyperplasia and skin tumor promotion. In: Fischer SM, Slaga TJ (eds) Arachidonic acid metabolism and tumor promotion. Nijhoff, Boston, pp 50–72

    Google Scholar 

  • Fürstenberger G, Berry DL, Sorg B, Marks F (1981) Skin tumor promotion by phorbol esters is a two-stage process. Proc Natl Acad Sci USA 78:7722–7726

    Article  PubMed  Google Scholar 

  • Fürstenberger G, Kinzel V, Schwarz M, Marks F (1985) Partial inversion of the initiation-promotion sequence of multistage tumorigenesis in the skin of NMRI mice. Science 230:76–78

    Article  PubMed  Google Scholar 

  • Fujiki H, Suganuma M, Tahira T, Yoshioka A, Nahayasu M, Endo Y, Shudo K, Takayama S, Moore RE, Sugimura T (1984) New classes of tumor promoters. In: Fujiki H, Hecker E, Moore RE, Sugimura T, Weinstein IB (eds) Cellular interactions by environmental tumor promoters. Japan Scientific Societies Press, Tokyo/VNU Science, Utrecht, pp 37–48

    Google Scholar 

  • Fusenig NE (1981) In vitro systems for the study of skin carcinogenesis. In: Laerum OD, Iversen OH (eds) Biology of skin cancer, excluding melanomas. UICC Technical report no 13. UICC, Geneva, pp 120–123

    Google Scholar 

  • Gianelli F (1978) Xeroderma pigmentosum and the role of DNA repair in oncogenesis. Bull Cancer (Paris) 65:323–334

    Google Scholar 

  • Gissmann L (1984) Papillomaviruses and their association with cancer in animals and man. Cancer Surv 3:161–181

    Google Scholar 

  • Gissmann L, Wolnik L, Ikenberg H, Koldovsky U, Schnürch HG, Zur Hausen H (1983) Human papilloma virus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc Natl Acad Sci USA 80:560–563

    Article  PubMed  CAS  Google Scholar 

  • Goerttler K, Loehrke H (1977) Diaplacental carcinogenesis: tumor localization and tumor incidence in NMRI mice after diaplacental initiation with DMBA and urethane and postnatal promotion with the phorbol ester TPA in a modified 2-stage Berenblum Mot-tram experiment. Virchows Arch [A] 376:117–122

    Article  CAS  Google Scholar 

  • Goerttler K, Loehrke H, Schweizer J, Hesse B (1980) Positive two-stage carcinogenesis in female Sprague-Dawley rats using DMBA as initiator and TPA as promoter. Virchows Arch [A] 385:181–186

    Article  CAS  Google Scholar 

  • Goustin AS, Leof EB, Shipley GD, Moses HL (1986) Growth factors and cancer. Cancer Res 46:1015–1029

    PubMed  CAS  Google Scholar 

  • Greither A, Tritsch H (1957) Die Geschwülste der Haut. Thieme, Stuttgart

    Google Scholar 

  • Gross L (1983) Carcinogenic viruses, vol I. Pergamon, Oxford, pp 48–83

    Google Scholar 

  • Gschwendt M, Kittstein W, Marks F (1987) Cyclosporin A inhibits phorbol ester-induced cellular proliferation and tumor promotion as well as phosphorylation of a 100 kD protein in mouse epidermis. Carcinogenesis 8:203–207

    Article  PubMed  CAS  Google Scholar 

  • Hart RW, Setlow RB, Woodhead AD (1977) Evidence that pyrimidine dimers in DNA can give rise to tumors. Proc Natl Acad Sci USA 74:5574–5578

    Article  PubMed  CAS  Google Scholar 

  • Hecker E (1978) Structure-activity relationships in diterpene esters irritant and cocarcino-genic to mouse skin. In: Slaga TJ, Sivak A, Boutwell RK (eds) Mechanisms of tumor promotion and cocarcinogenesis. Raven, New York, pp 11–48

    Google Scholar 

  • Hecker E (1985) Chemische Karzinogenese. In: Gross R, Schmidt CG (eds) Klinische Onkologie. Thieme, Stuttgart, pp 5.1–5.17

    Google Scholar 

  • Hecker E, Schmidt R (1974) Phorbolesters — the irritants and cocarcinogens of Croton tiglium L. Fortschr Chem Org Naturst 31:377–467

    Article  PubMed  CAS  Google Scholar 

  • Hecker E, Fusenig NE, Kunz W, Marks F, Thielmann HW (eds) (1982) Cocarcinogenesis and biological effects of tumor promoters. Raven, New York

    Google Scholar 

  • Helm F (ed) (1979) Cancer dermatology. Lea and Febiger, Philadelphia

    Google Scholar 

  • Hennings H, Shores R, Wenk ML, Spangler EF, Tarone R, Yuspa SH (1983) Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters. Nature 304:67–69

    Article  PubMed  CAS  Google Scholar 

  • Hill J (1761) Caution against the immoderate use of snuff. Founded on the human qualities of the tobacco plant. Baldwin and Jackson, London

    Google Scholar 

  • Honn KV, Bockman RS, Marnett LJ (1981) Prostaglandins and cancer: a review of tumor initiation through tumor metastasis. Prostaglandins 21:833–864

    Article  PubMed  CAS  Google Scholar 

  • Jarrett WFH (1978) Transformation of warts to malignancy in alimentary carcinoma of cattle. Bull Cancer (Paris) 65:191–194

    CAS  Google Scholar 

  • Jarrett WFH, McNeil PE, Laird HM, O’Neil BW, Murphy J, Campo MS, Moar MH (1980) Papilloma viruses in benign and malignant tumors of cattle. In: Essex M, Todaro G, Zur Hausen H (eds) Viruses in naturally occurring cancer. Cold Spring Harbor Laboratory Press New York, pp 215–222

    Google Scholar 

  • Jerina DM, Sayer JM, Thakker DR, Yagi H (1980) Carcinogenicity of polycyclic aromatic hydrocarbons: the bay-region theory. In: Pullman B, Ts’o POP, Gelboin H (eds) Carcinogenesis: fundamental mechanisms and environmental effects. Reidel, Dordrecht, pp 1–12

    Chapter  Google Scholar 

  • Johnson BE (1978) Formation of thymine containing dimers in skin exposed to UV light. Bull Cancer (Paris) 65:283–298

    CAS  Google Scholar 

  • Jung EG (1978) Xeroderma pigmentosum: heterogenous syndrome and model for UV carcinogenesis. Bull Cancer (Paris) 65:315–322

    CAS  Google Scholar 

  • Kennaway EL (1925) The identification of a carcinogenic compound in coal-tar. Br Med J 2:749–752

    Article  Google Scholar 

  • Kinzel V, Loehrke H, Goerttler K, Fürstenberger G, Marks F (1984) Suppression of the first stage of TPA-effected tumor promotion in mouse skin by nontoxic inhibition of DNA synthesis. Proc Natl Acad Sci USA 81:5858–5862

    Article  PubMed  CAS  Google Scholar 

  • Kinzel V, Fürstenberger G, Loehrke H, Marks F (1986) Three-stage tumorigenesis in mouse skin: DNA synthesis as a prerequisite for the conversion stage induced by TPA prior to initiation. Carcinogenesis 7:779–782

    Article  PubMed  CAS  Google Scholar 

  • Kirchner H (1986) Immunobiology of human papillomavirus infection. Progr Med Virol 33:1–41

    CAS  Google Scholar 

  • Klein-Szanto AJP (1984) Morphological evaluation of tumor promoter effects on mammalian skin. In: Slaga TJ (ed) Mechanisms of tumor promotion, vol II. CRC, Boca Raton, pp 41–72

    Google Scholar 

  • Kripke M, Urbach F, Witkop C (1981) Ultraviolet radiation carcinogenesis. In: Laerum OD, Iversen OH (eds) Biology of skin cancer, excluding melanomas. UICC technical report no 13. UICC, Geneva, pp 195–222

    Google Scholar 

  • Laerum OD, Iversen OH (eds) (1981) Biology of skin cancer, excluding melanomas. UICC technical report no 13. UICC, Geneva

    Google Scholar 

  • Lancaster WD, Olson C (1978) Demonstration of two distinct classes of bovine papilloma viruses. Virology 89:372–379

    Article  PubMed  CAS  Google Scholar 

  • Lehmann AR, Kirk-Bell S, Arlett CF, Paterson MC, Lohmann PHM, deWeerd-Kastelein EA, Bootsma D (1975) Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc Natl Acad Sci USA 72:219–223

    Article  PubMed  CAS  Google Scholar 

  • Lehmann AR, Kirk-Bell S, Arlett CF, Harcourt SA, deWeerd-Kastelein EA, Keijzer W, Hall-Smith P (1977) Repair of UV light damage in a variety of human fibroblast cell strains. Cancer Res 37:904–910

    PubMed  CAS  Google Scholar 

  • Levin W, Wood A, Chang R, Ryan D, Thomas P, Yagi H, Thakker D, Yvas K, Boyd C, Chu SY, Conney AH, Jerina DM (1982) Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens. Drug Metab Rev 13:555–580

    Article  PubMed  CAS  Google Scholar 

  • Luger A, Gschnaidt G (eds) (1983) Dermatologische Onkologie. Urban and Schwarzen-berg, Vienna

    Google Scholar 

  • Lutzner MA (1978) Epidermodysplasia verruciformis. Bull Cancer (Paris) 65:169–182

    CAS  Google Scholar 

  • Marks F (1981) Tumor-promoting phorbol esters. In: Laerum OD, Iversen OH (eds) Biology of skin cancer, excluding melanomas. UICC technical report no. 13. UICC, Geneva, pp 137–147

    Google Scholar 

  • Marks F (1987) What’s new in oncogenes and growth factors? Path Res Pract 182:831–848

    Article  PubMed  CAS  Google Scholar 

  • Marks F, Fürstenberger G (1984) Multistage tumor promotion in skin. In: Fujiki H, Hecker E, Moore RE, Sugimura T, Weinstein IB (eds) Cellular interactions by environmental tumor promoters. Japan Scientific Societies Press, Tokyo/VNU Science, Utrecht, pp 273–287

    Google Scholar 

  • Marks F, Fürstenberger G (1985) Tumor promotion in skin: are active oxygen species involved? In: Sies H (ed) Oxidative stress. Academic Press, London, pp 437–475

    Google Scholar 

  • Marks F, Fürstenberger G (1987) Multistage carcinogenesis in animal skin: the reductionist’s approach in cancer research. In: Iversen OH (ed) Theories of carcinogenesis. Hemisphere, Washington DC, pp 179–190

    Google Scholar 

  • Marks F, Bertsch S, Grimm W, Schweizer J (1978) Hyperplastic transformation and tumor promotion in mouse epidermis: possible consequences of disturbances of endogenous mechanisms controlling proliferation and differentiation. In: Slaga TJ, Sivak A, Boutwell RK (eds) Mechanisms of tumor promotion and cocarcinogenesis. Raven, New York, pp 97–116

    Google Scholar 

  • Marks F, Bertsch S, Fürstenberger G (1979) Ornithine decarboxylase activity, cell proliferation and tumor promotion in mouse epidermis in vivo. Cancer Res 39:41–4188

    Google Scholar 

  • Marks F, Bertsch S, Fürstenberger G, Richter H (1983 a) Growth control in mouse epidermis — facts and speculations. In: Wright NA, Camplejohn RS (eds) Psoriasis: cell proliferation. Churchill Livingstone, Edinburgh, pp 173–188

    Google Scholar 

  • Marks F, Fürstenberger G, Ganss M, Richter H, Seemann D (1983 b) Hyperplastic transformation, the response of skin to irritation. Br J Dermatol 109 (Suppl 25): 18–21

    PubMed  CAS  Google Scholar 

  • Marks F, Fürstenberger G, Gschwendt M, Rogers M, Schurich B, Kaina B, Bauer G (1988) The wound response as a key element for an understanding of multistage carcinogenesis in skin. In: Feo F, Pani P, Columbano A, Garcea R (eds) Chemical carcinogenesis. Plenum, New York, pp 217–234

    Google Scholar 

  • McEvoy BF (1979) Genodermatoses associated with malignancies. In: Helm F (ed) Cancer dermatology. Lea and Febiger, Philadelphia, pp 39–55

    Google Scholar 

  • Melczer N (1961) Präcancerosen und primäre Krebse der Haut. Akadémiai Kiado, Budapest

    Google Scholar 

  • Miller EC, Miller JA (1971) Chemical carcinogenesis: mechanisms and approaches to its control. J Natl Cancer Inst 47(3):V

    PubMed  CAS  Google Scholar 

  • Miller EC, Miller JA (1976) The metabolism of chemical carcinogens to reactive electro-philes and their possible mechanisms of actions in carcinogenesis. In: Searle CE (ed) Chemical carcinogens. American Chemical Society, Washington DC, pp 737–762 (ACS Monogr 173).

    Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepier R (1982) The catalogue of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    Article  PubMed  CAS  Google Scholar 

  • Mottram JC (1944) A developing factor in experimental blastogenesis. J Pathol Bacteriol 56:181–187

    Article  CAS  Google Scholar 

  • Orth G, Breitburd F, Faure M, Croissant O (1977) Papilloma viruses: possible role in human cancer. In: Hiatt HH, Watson JD, Wisten JA (eds) Origin of human cancer. Cold Spring Harbor, New York, pp 1043–1068

    Google Scholar 

  • Orth G, Faure M, Breiburd F, Croissant O, Jablonska S, Obalek S, Jarzabek-Chorzelska M, Rzesa G (1980) Epidermodysplasia verruciformis: a model for the role of papilloma viruses in human cancer. In: Essex M, Todaro G, Zur Hausen H (eds) Viruses in naturally occurring cancer, vol A. Cold Spring Harbor, New York, pp 259–282

    Google Scholar 

  • Parkinson EK (1985) Defective responses of transformed keratinocytes to terminal differentiation stimuli. Their role in epidermal tumour promotion by phorbol esters and by deep skin wounding. Br J Cancer 52:479–493

    Article  PubMed  CAS  Google Scholar 

  • Parrish JA (1983) Responses of skin to visible and ultraviolet radiation. In: Goldsmith LA (ed) Biochemistry and physiology of the skin. Oxford University Press, New York, pp 713–733

    Google Scholar 

  • Peters J, Müller R (eds) (1981) Präkanzerosen und Papillomatosen der Haut. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pott P (1775) The surgical works of Percivall Pott, vol 5. Haws, Clarke and Collins, London, pp 60–68

    Google Scholar 

  • Potten CS, Allen TD (1975) The fine structure and cell kinetics of mouse epidermis after wounding. J Cell Sci 17:413–447

    PubMed  CAS  Google Scholar 

  • Prunieras M (ed) (1978) On skin carcinogenesis. Bull Cancer (Paris) 65:141–362

    Google Scholar 

  • Quintanilla M, Brown K, Ramsden M, Balmain A (1986) Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322:78–80

    Article  PubMed  CAS  Google Scholar 

  • Reddy AL, Fialkow PJ (1983) Papillomas induced by initiation-promotion differ from those induced by carcinogen alone. Nature 304:69–71

    Article  PubMed  CAS  Google Scholar 

  • Ripoll EA, Webber MM (1986) Skin cancer: Geographic distribution and risk factors. In: Webber MM, Sekely LI (eds) In vitro models for cancer research, vol III. Carcinomas of the mammary gland, uterus and skin. CRC, Boca Raton, pp 232–243

    Google Scholar 

  • Ritchie AC, Saffiotti U (1955) Orally administered 2-acetyl-aminofluorene as an initiator and as a promoter in epidermal carcinogenesis in the mouse. Cancer Res 15:84–88

    PubMed  CAS  Google Scholar 

  • Roop DR, Lowy DR, Tambourin PE, Strickland J, Harper JR, Balaschak M, Spangler EF, Yuspa SH (1986) An activated Harvey ras oncogene produces beningn tumours on mouse epidermal tissue. Nature 323:822–824

    Article  PubMed  CAS  Google Scholar 

  • Rose-John S, Fürstenberger G, Krieg P, Besemfelder E, Rincke G, Marks F (1988) Differential effects of phorbol esters on c-fos and c-myc and ornithine decarboxylase gene expression in mouse skin in vivo. Carcinogenesis 9:831–835

    Article  PubMed  CAS  Google Scholar 

  • Rous P, Kidd JG (1938) The carcinogenic effects of papilloma viruses on the tarred skin of rabbits. I. Description of the phenomenon. J Exp Med 67:399–427

    Article  PubMed  CAS  Google Scholar 

  • Rous P, Kidd JG (1941) Conditional neoplasms and subthreshold neoplastic states. A study of tumors in rabbits. J Exp Med 73:365–389

    Article  PubMed  CAS  Google Scholar 

  • Schoepe KB, Friesel H, Schurdak ME, Randerath K, Hecker E (1986) Comparative DNA binding of 7,12-DMBA and some of its metabolites in mouse epidermis in vivo as revealed by the 32P-postlabeling technique. Carcinogenesis 7:535–540

    Article  PubMed  CAS  Google Scholar 

  • Schweizer J (1979) Neogenesis of functional hair follicles in adult mouse skin selectively induced by the tumor-promoting phorbol esters. Experientia 35:1651–1653

    Article  PubMed  CAS  Google Scholar 

  • Schweizer J, Marks F (1977) The tumor promoter TPA induces the formation of new hair follicles in the epidermis of the mouse tail. Cancer Res 37:4195–4201

    PubMed  CAS  Google Scholar 

  • Scotto J, Fraumeni JF (1982) Skin cancer (other than melanoma). In: Schottenfeld D, Fraumeni JF (eds) Cancer epidemiology and prevention. Saunders, Philadelphia, pp 996–1011

    Google Scholar 

  • Scotto J, Fears TR, Fraumeni JF (1983) Incidence of nonmelanoma skin cancer in the United States. US Department of Health and Human Services, pp 8–22, NIH Publ No 83–2433

    Google Scholar 

  • Setlow RP, Regan JD, German J, Carrier WL (1969) Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of UV damage to their DNA. Proc Natl Acad Sci USA 64:1035–2041

    Article  PubMed  CAS  Google Scholar 

  • Sims P (1980) The metabolic activation of chemical carcinogens. Br Med Bull 36:11–18

    PubMed  CAS  Google Scholar 

  • Sisskin EE, Gray T, Barrett JC (1982) Correlation between sensitivity to tumor promotion and sustained epidermal hyperplasia of mice and rats treated with TPA. Carcinogenesis 3:403–408

    Article  PubMed  CAS  Google Scholar 

  • Slaga TJ (1980) Antiinflammatory steroids: potent inhibitors of tumor promotion. In: Slaga TJ (ed) Modifiers of chemical carcinogenesis. Raven, New York, pp 111–126

    Google Scholar 

  • Slaga TJ (ed) (1984 a) Mechanisms of tumor promotion, vol I-IV. CRC, Boca Raton

    Google Scholar 

  • Slaga TJ (ed) (1984b) Mechanisms of tumor promotion, vol III. Tumor promotion and carcinogenesis in vitro. CRC, Boca Raton

    Google Scholar 

  • Slaga TJ (1984 c) Mechanisms involved in two-stage carcinogenesis in mouse skin. In: Slaga TJ (ed) Mechanisms of tumor promotion, vol II. Tumor promotion and skin carcinogenesis. CRC, Boca Raton, pp 1–16

    Google Scholar 

  • Slaga TJ (1984d) Multistage skin tumor promotion and specificity of inhibition. In: Slaga TJ (ed) Mechanisms of tumor promotion, vol II. CRC, Boca Raton, pp 189–196

    Google Scholar 

  • Slaga TJ, Sivak A, Boutwell RK (eds) (1978) Mechanisms of tumor promotion and cocar-cinogenesis. Raven, New York

    Google Scholar 

  • Slaga TJ, Fischer SM, Nelson K, Gleason GL (1980) Studies on the mechanism of skin tumor promotion: evidence for several stages of promotion. Proc Natl Acad Sci USA 77:3659–3663

    Article  PubMed  CAS  Google Scholar 

  • Slaga TJ, Triplett LL, Yotti LP, Trosko JE (1981) Skin tumor promoting activity of benzoyl peroxide, a widely used free radical generating compound. Science 213:1023–1025

    Article  PubMed  CAS  Google Scholar 

  • Slaga TJ, Fischer SM, Weeks CE, Nelson K, Mamrack M, Klein-Szanto AJP (1982) Specificity and mechanism(s) of promoter inhibitors in multistage promotion. In: Hecker E, Fusenig NE, Kunz W, Marks F, Thielman HW (eds) Cocarcinogenesis and biological effects of tumor promoters. Raven, New York, pp 19–34

    Google Scholar 

  • Sutherland BM, Rice M, Wagner EK (1975) Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme. Proc Natl Acad Sci USA 72:103–107

    Article  PubMed  CAS  Google Scholar 

  • Sutherland BM, Cimino JS, Delihas N, Shih AG, Oliver RP (1980) UV-induced transformation of human cells to anchorage-independent growth. Cancer Res 40:1934–1939

    PubMed  CAS  Google Scholar 

  • Syverton JT (1952) The pathogenesis of rabbit papilloma-to-carcinoma sequence. Ann NY Acad Sci 54:1126–1140

    Article  PubMed  CAS  Google Scholar 

  • Taguchi R, Yokoyama M, Kitamura Y (1984) Intraclonal conversion from papilloma to carcinoma in the skin of PgK-1a/PgK-1b mice treated by a complete carcinogen protocol or by an initiation-promotion regimen. Cancer Res 44:3779–3782

    PubMed  CAS  Google Scholar 

  • Takebe H (1979) Xeroderma pigmentosum: DNA repair defects and skin cancer. Gann Monogr Cancer Res 24:103–117

    CAS  Google Scholar 

  • Thielmann HW (1984) Enzymology of DNA repair: a survey. In: Greim H, Jung R, Kramer M, Marquardt H, Oesch F (eds) Biochemical basis of chemical carcinogenesis. Raven, New York, pp 233–256

    Google Scholar 

  • Thielmann HW, Edler L, Popanda O, Friemel S (1985) Xeroderma pigmentosum patients from the Federal Republic of Germany: decrease in post-UV colony-forming ability in 30 xeroderma pigmentosum fibroblast strains is quantitatively correlated with a decrease in DNA-incising capacity. J Cancer Res Clin Oncol 109:227–240

    Article  PubMed  CAS  Google Scholar 

  • Troll W, Wiesner R (1983) Protease inhibitors as anticarcinogens and radioprotectors. In: Nygaard OF, Simic MG (eds) Radioprotectors and anticarcinogens. Academic Press, New York, pp 567–574

    Google Scholar 

  • Troll W, Wiesner R (1985) The role of oxygen radicals as a possible mechanism of tumor promotion. Annu Rev Pharmacol Toxicol 25:509–528

    Article  PubMed  CAS  Google Scholar 

  • Trosko JE, Chang CC (1984) Role of intercellular communication in tumor promotion. In: Slaga TJ (ed) Mechanisms of tumor promotion, vol IV. CRC, Boca Raton, pp 119–146

    Google Scholar 

  • Twort CC, Ing HR (1928) Untersuchungen über krebserzeugende Agenzien. Z Krebsforsch 27:309–351

    Google Scholar 

  • Unna P (1884) Histopathologic der Hautkrankheiten. Hirschwald, Berlin

    Google Scholar 

  • Urbach F (ed) (1963) Conference on biology of cutaneous cancer. US Dept of Health, Education and Welfare, Bethesda (NCI Monogr 10)

    Google Scholar 

  • Urbach F (1980) Ultraviolet radiation and skin cancer in man. Prev Med 9:227

    Article  PubMed  CAS  Google Scholar 

  • Urbach F (1983) Genese der Hautkarzinome. In: Luger A, Gschnaidt G (eds) Dermatologische Onkologie. Urban and Schwarzenberg, Vienna, pp 4–16

    Google Scholar 

  • Urbach F, Witkop CJ, Laerum OD (1981) Skin cancer in man. In: Laerum OD, Iversen OH (eds) Biology of skin cancer excluding melanomas. UICC technical report no 13. UICC, Geneva, pp 56–58

    Google Scholar 

  • Van Duuren BL (1978) Tumor-promoting and cocarcinogenic agents in chemical carcinogenesis. In: Searle CE (ed) Chemical carcinogens. American Chemical Society, Washington DC, pp 24–51 (ACS Monogr 173)

    Google Scholar 

  • Van Duuren BL, Orris L (1965) The tumor-enhancing principles from Croton tiglium L. Cancer Res 25:1871–1875

    PubMed  Google Scholar 

  • Verma AK, Shapas BG, Rice HM, Boutwell RK (1979) Correlation of the inhibition by retinoids of tumor-promoter-induced mouse epidermal ornithine decarboxylase activity and of skin tumor promotion. Cancer Res 39:419–425

    PubMed  CAS  Google Scholar 

  • Vigny P, Kindts M, Cooper CS, Grover PL, Sims P (1981) Fluorescence spectra of nucleo-side-hydrocarbon adducts formed in mouse skin treated with 7,12-DMBA. Carcinogenesis 2:115–119

    Article  PubMed  CAS  Google Scholar 

  • Weeks CE, Slaga TJ, Boutwell RK (1984) The role of polyamines in tumor promotion. In: Slaga TJ (ed) Mechanisms of tumor promotion, vol. II. CRC, Boca Raton, pp 127–142

    Google Scholar 

  • Wiebel FJ (1980) Activation and inactivation of carcinogens by microsomal monooxygenase: modification by benzoflavones and polycyclic aromatic hydrocarbons. In: Slaga TJ (ed) Modifiers of chemical carcinogenesis. Raven, New York, pp 57–84

    Google Scholar 

  • Yamagiwa K, Ichikawa K (1914) Ãœber die künstliche Epithelwucherung. Gann 8:11–15

    Google Scholar 

  • Yuspa SH (1983) Cutaneous carcinogenesis: natural and experimental. In: Goldsmith LA (ed) Biochemistry and physiology of the skin. Oxford University Press, New York, pp 1115–1138

    Google Scholar 

  • Yuspa SH (1984) Molecular and cellular basis for tumor promotion in mouse skin. In: Fu-jiki H, Hecker E, Moore RE, Sugimura T, Weinstein IB (eds) Cellular interactions by environmental tumor promoters. Japan Scientific Societies Press, Tokyo VNU Science, Utrecht, pp 315–326

    Google Scholar 

  • Yuspa SH, Lichti U, Morgan D, Hennings H (1980) Chemical carcinogenesis studies in mouse epidermal cell cultures. In: Bernstein IA, Seiji M (eds) Biochemistry of normal and abnormal epidermal differentiation. University of Tokyo Press, Tokyo

    Google Scholar 

  • Yuspa SH, Kilkenny AE, Stanley J, Lichti U (1985) Keratinocytes blocked in phorbol ester-responsive early stage of terminal differentiation by sarcoma viruses. Nature 314:459–462

    Article  PubMed  CAS  Google Scholar 

  • Zur Hausen H (1975) Oncogenic herpes viruses. Biochim Biophys Acta 417:25–53

    PubMed  CAS  Google Scholar 

  • Zur Hausen (1977) Human papilloma viruses and their possible role in squamous cell carcinoma. Curr Top Microbiol Immunol 78:1–30

    Article  PubMed  Google Scholar 

  • Zur Hausen H (1981) Viral carcinogenesis. In: Laerum OD, Iversen OH (eds) Biology of skin cancer, excluding melanomas. UICC technical report no 13. UICC Geneva, pp 228–237

    Google Scholar 

  • Zur Hausen H (1985) Genital papillomavirus infections. Prog Med Virol 32:15–21

    PubMed  CAS  Google Scholar 

  • Zur Hausen H, Gissmann L, Schlehofer JR (1984) Viruses in the etiology of human genital cancer. Prog Med Virol 30:170–186

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marks, F. (1989). Skin Cancer (Excluding Melanomas). In: Greaves, M.W., Shuster, S. (eds) Pharmacology of the Skin II. Handbook of Experimental Pharmacology, vol 87 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74054-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74054-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74056-5

  • Online ISBN: 978-3-642-74054-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics