Neurotransmitter Function in Post-Mortem Human Brain: An Overview

  • C. J. Fowler
  • R. F. Cowburn
  • J. A. Hardy
  • P. Wester
  • B. Winblad
Conference paper


Use of post-mortem human brain samples in research is associated with a number of advantages and disadvantages. The two main advantages are (a) that the disease process in question can be studied per se instead of using animal models, the relevance of which are sometimes doubtful (for discussion, see Willner 1984; Fowler et al. 1988), and (b) that the observed neurochemical changes can be correlated with symptomatology. Disadvantages include the fact that autopsy samples represent the end point of the disease, where secondary symptoms may play an obfuscatory role. In addition, interpretation of findings is hindered by a number of factors, such as drug treatment, agonal state and post-mortal stability, that must be taken into account. Finally, the nature of the samples, and the necessity for their storage, rules out a number of assays (for further discussion, see Hardy and Dodd 1983; Perry and Perry 1983; Lee 1988).


Neurotransmitter Function Nipecotic Acid Intracellular Communication Cyclohexane Carboxylic Acid Cortical Brain Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrang JM, Devaux B, Chodkiewicz JP, Schwartz JC (1988) HH3-receptors control histamine release in human brain. J Neurochem 51: 105–108PubMedCrossRefGoogle Scholar
  2. Bowery NG, Jones GP, Neal MJ (1976) Selective inhibition of neuronal GABA uptake by cis-1,3-aminocyclohexane carboxylic acid. Nature 264: 281–284CrossRefGoogle Scholar
  3. Cowburn RF, Dodd PR, Hardy J A, Johnston GAR (1987) A comparison of high affinity synaptosomal uptake of D-aspartate in rat and human brain. Neurochem Int 10: 339–346PubMedCrossRefGoogle Scholar
  4. Danielsson E, Eckernäs SÅ, Westlind-Danielsson A, Nordström Ö, Bartfai T, Gottfries CG, Wallin A (1988) VIP-sensitive adenylate cyclase, guanylate cyclase, muscarinic receptors, choline acetyltransferase and acetylcholinesterase, in brain tissue afflicted by Alzheimer’s disease/senile dementia of the Alzheimer type. Neurobiol Aging 9: 153–162PubMedCrossRefGoogle Scholar
  5. Dodd PR, Hardy JA, Baig EB, Kidd AM, Bird ED, Watson WEJ, Johnston GAR (1986) Optimization of freezing, storage, and thawing conditions for the preparation of metabolically active synaptosomes from frozen rat and human brain. Neurochem Pathol 4: 177–198PubMedCrossRefGoogle Scholar
  6. Dodd PR, Hambley JW, Cowburn RF, Hardy JA (1988) A comparison of methodologies for the study of functional transmitter neurochemistry in human brain. J Neurochem 50: 1333–1345PubMedCrossRefGoogle Scholar
  7. Fowler CJ (1988) Validity of human brain autopsy samples for characterizing neurotransmitter function. Trends Pharmacol Sci 9: 232–233PubMedCrossRefGoogle Scholar
  8. Fowler CJ, Cowburn R, Archer T, Mohammed AK, Cross AJ (1988) La fragilité des modèles animaux “cholinergiques” dans la maladie d’Alzheimer. Alzheimer Actualités 18: 4–5Google Scholar
  9. Fowler CJ, Thorell G, Fagervall I (1989) Postmortem- and cryostability of the potassium-evoked release of [3H]5-hydroxytryptamine from rat cerebral cortical miniprisms. J Neural Transm 75: 135–148PubMedCrossRefGoogle Scholar
  10. Haan EA, Bowen DM (1981) Protection of neocortical tissue prisms from freeze-thaw injury by dimethyl sulphoxide. J Neurochem 37: 243–246PubMedCrossRefGoogle Scholar
  11. Hardy JA, Dodd PR (1983) Metabolic and functional studies on post-mortem human brain. Neurochem Int 5: 253–266PubMedCrossRefGoogle Scholar
  12. Hardy JA, Dodd PR, Oakley AE, Perry RH, Edwardson J A, Kidd AM (1983) Metabolically active synaptosomes can be prepared from frozen rat and human brain. J Neurochem 40: 608–614PubMedCrossRefGoogle Scholar
  13. Hardy JA, Wester P, Winblad B, Gezelius C, Bring G, Eriksson A (1985) The patients dying after long terminal phase have acidotic brains; implications for biochemical measurements on autopsy tissue. J Neural Transm 61: 253–264PubMedCrossRefGoogle Scholar
  14. Hardy J A, Barton A, Lofdahl E, Cheetham SC, Johnston GAR, Dodd PR (1986) Uptake of γ-aminobutyric acid and glycine by synaptosomes from postmortem human brain. J Neurochem 47: 460–467PubMedCrossRefGoogle Scholar
  15. Hardy J, Cowburn R, Barton A, Reynolds G, Dodd P, Wester P, O’Carroll AM, Lofdahl E, Winblad B (1987) A disorder of cortical GABAergic innervation in Alzheimer’s disease. Neurosci Lett 73: 192–196PubMedCrossRefGoogle Scholar
  16. Harms HH (1983) The antidepressant agents desipramine, fluoxetine, fluvoxamine and norzimelidine inhibit uptake of [3H]noradrenaline and [3H]5-hydroxytryptamine in slices of human and rat cortical brain tissue. Brain Res 275: 99–104PubMedCrossRefGoogle Scholar
  17. Harris M, Hopkin JM, Neal MJ (1973) Effect of centrally acting drugs on the uptake of γ-aminobutyric acid ( GABA) by slices of rat cerebral cortex. Br J Pharmacol 47: 229–239PubMedGoogle Scholar
  18. Iversen LL, Kelly JS (1975) Uptake and metabolism of γ-aminobutyric acid by neurones and glial cells. Biochem Pharmacol 24: 933–938PubMedCrossRefGoogle Scholar
  19. Johnston GAR, Krogsgaard-Larsen P, Stephanson A (1975) Batel nut constituents as inhibitors of γ-aminobutyric acid uptake. Nature 258: 627–628PubMedCrossRefGoogle Scholar
  20. Lee T (1988) Postmortem studies of dopamine receptors in schizophrenia. In: Sen AK, Lee T (eds) Receptors and ligands in psychiatry. Cambridge University Press, Cambridge, pp 11–28 (Intercellular and intracellular communication, vol 3 )Google Scholar
  21. Lloyd KG, Carter CJ (1988) Cholinergic neurons in Huntington’s disease. In: Sen AK, Lee T (eds) Receptors and ligands in neurological disorders. Cambridge University Press, Cambridge, pp 1–24 (Intercellular and intracellular communication, vol 4 )Google Scholar
  22. Mann JJ, McBride PA, Stanley M (1986) Postmortem monoamine receptor and enzyme studies in suicide. Ann NY Acad Sci 487: 114–121PubMedCrossRefGoogle Scholar
  23. Morgan DG, May PC, Finch CE (1988) Neurotransmitter receptors in normal human aging and Alzheimer’s disease. In: Sen AK, Lee T (eds) Receptors and ligands in neurological disorders. Cambridge University Press, Cambridge, pp 120–147 (Intercellular and intracellular communication, vol 4 )Google Scholar
  24. O’Neill C, Marcusson J, Nordberg A, Winblad B (1987) The influence of age on neurotransmitters in the human brain. In: Govoni S, Battaini F (eds) Modification of cell to cell signals during normal and pathological aging. Springer, Berlin Heidelberg New York, pp 183–198 (NATO ASI series, vol H9 )CrossRefGoogle Scholar
  25. Perry EK, Candy JM (1988) Cortical neurotransmitter receptors: distribution and involve-ment in Alzheimer’s disease. In: Sen AK, Lee T (eds) Receptors and ligands in neurological disorders. Cambridge University Press, Cambridge, pp 98–119 (Intercellular and intracellular communication, vol 4 )Google Scholar
  26. Perry EK, Perry RH (1983) Human brain neurochemistry — some postmortal problems. Life Sci 33: 1733–1743PubMedCrossRefGoogle Scholar
  27. Sidhu HS, Munoz DG, Wood JD (1987) γ-Aminobutyric acid ( GABA) uptake systems in human frontal cortex. Brain Res 435: 334–336PubMedCrossRefGoogle Scholar
  28. Wester P, Bateman DE, Dodd PR, Edwardson JA, Hardy JA, Kidd AM, Perry RH, Singh GB (1985) Agonal status affects the metabolic activity of nerve endings isolated from postmortem human brain. Neurochem Pathol 3: 169–180PubMedCrossRefGoogle Scholar
  29. Westlind-Danielsson A, Undén A, Abens J, Andell S, Bartfai T (1987) Neuropeptide Y receptors and the inhibition of adenylate cyclase in the human frontal and temporal cortex. Neurosci Lett 74: 237–242PubMedCrossRefGoogle Scholar
  30. Willner P (1984) The validity of animal models of depression. Psychopharmacology 83: 1–16PubMedCrossRefGoogle Scholar
  31. Young AB, Penney JB (1988) Receptor mapping using autoradiographic techniques. In: Sen AK, Lee T (eds) Receptors and ligands in psychiatry. Cambridge University Press, Cambridge, pp 505–525 (Intercellular and intracellular communication, vol 3 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • C. J. Fowler
    • 1
    • 2
  • R. F. Cowburn
    • 1
  • J. A. Hardy
    • 3
  • P. Wester
    • 4
    • 5
  • B. Winblad
    • 1
    • 2
  1. 1.Department of Geriatric Medicine, Karolinska InstitutetHuddinge SjukhusHuddingeSweden
  2. 2.Research and Development LaboratoriesAstra Research Centre ABSödertäljeSweden
  3. 3.Biochemistry DepartmentSt. Mary’s Hospital Medical SchoolLondonUK
  4. 4.Department of Internal MedicineUniversity of UmeåUmeåSweden
  5. 5.Department of PathologyUniversity of UmeåUmeåSweden

Personalised recommendations