Advertisement

Gene Expression of Opioid Peptides is Regulated by Electrical Activity

  • V. Höllt
  • K. Feasey
  • N. Kley
  • I. Moneta
  • B. Morris
Conference paper

Abstract

A fundamental question in neurobiology is how the level of gene expression within neurones is regulated by the electrical and neurochemical signals that they receive. In the simplest model, depolarization of the cell membrane may lead not only to neurotransmitter release but also to an altered rate of transmitter synthesis. In this paper we summarize our recent data showing that depolarization of neuronal, sympathetic, and endocrine cells alter the levels of mRNA coding for the opioid peptide precursors proopiomelanocortin (POMC), proenkephalin, and prodynorphin in vitro or in vivo.

Keywords

Dentate Gyrus Chromaffin Cell Opioid Peptide POMC mRNA Bovine Chromaffin Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auffray C, Rougeon F (1980) Purification of mouse immunoglobin heavy chain mRNAs from total myeloma tumor RNA. Eur J Biochem 303–312Google Scholar
  2. Bancroft FC, Gick GG, Johnson ME, White BA (1985) Regulation of growth hormone and prolactin gene expression by hormones and calcium. In: Litwack G (ed) Biochemical actions of hormones, vol 12. Academic, New York, pp 173–183Google Scholar
  3. Black IB, Adler JE, Dreyfus GM, Jonakait, Katz DM, LaGamma EF, Markey KM (1984) Neurotransmitter plasticity at the molecular level. Science 225: 1266–1270PubMedCrossRefGoogle Scholar
  4. Chomzynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159CrossRefGoogle Scholar
  5. Fischer-Colbrie R, Iacangelo A, Eiden LE (1988) Neural and humoral factors separately regulate neuropeptide Y, enkephalin and chromagranin A and B mRNA levels in rat adrenal medulla. Proc Natl Acad Sci USA 85: 3240–3244PubMedCrossRefGoogle Scholar
  6. Kanamatsu T, Unsworth CD, Diliberto EJ, Viveros OH, Hong JS (1986) Reflex splanchnic nerve stimulation increases levels of proenkephalin A mRNA and proenkephalin A- related peptides in the rat adrenal medulla. Proc Natl Acad Sci USA 83: 9245–9249PubMedCrossRefGoogle Scholar
  7. Kilpatrick DL, Howells RD, Fleminger G, Udenfriend S (1984) Denervation of rat adrenal glands markedly increases preproenkephalin mRNA. Proc Natl Acad Sci USA 81: 7221–7223PubMedCrossRefGoogle Scholar
  8. Kley N, Loeffler JP, Pittius CW, Hollt V (1986) Proenkephalin A gene expression in bovine adrenal chromaffin cells is regulated by changes in electrical activity. EMBO J 5: 967–970PubMedGoogle Scholar
  9. LaGamma EF, White JD, Adler JE, Krause JE, McKelvy JF, Black IB (1985) Depolarization regulates adrenal preproenkephalin mRNA. Proc Natl Acad Sci USA 82: 8252–8255PubMedCrossRefGoogle Scholar
  10. Morgan JI, Curran T (1986) Role of ion flux in the control of c-fos expression. Nature 322: 552–555PubMedCrossRefGoogle Scholar
  11. Morris BJ, Haarmann I, Kempter B, Höllt V, Herz A (1986) Localization of prodynorphin messenger RNA in rat brain by in situ hybridization using a synthetic oligonucleotide probe. Neurosci Lett 69: 104–108PubMedCrossRefGoogle Scholar
  12. Morris BJ, Moneta ME, ten Bruggencate G, Hollt V (1987) Levels of prodynorphin mRNA in rat dentate gyrus are decreased during hippocampal kindling. Neurosci Lett 80: 298–302PubMedCrossRefGoogle Scholar
  13. Morris BJ, Feasey KJ, ten Bruggencate G, Herz A, Hollt V (1988) Electrical stimulation in vivo increases the expression of proenkephalin mRNA and decreases the expression of prodynorphin mRNA in rat hippocampal granule cell. Proc Natl Acad Sci USA 85: 3226–3230PubMedCrossRefGoogle Scholar
  14. Naranjo JR, Mocchetti I, Schwartz JP, Costa E (1986) Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells. Proc Natl Acad Sci USA 83: 1513–1517PubMedCrossRefGoogle Scholar
  15. Pittius CW, Kley N, Loeffler JP, Hollt V (1985) Quantitation of proenkephalin A messenger RNA in bovine brain, pituitary and adrenal medulla: correlation between mRNA and peptide levels. EMBO J 4: 1257–1260PubMedGoogle Scholar
  16. Siggins GR, Gruol DL (1987) Mechanisms of transmitter action in the vertebrate central nervous system. In: Bloom FE (ed) Handbook of physiology. The nervous system, vol 4. American Physiological Society, Bethesda, pp 1–114Google Scholar
  17. von Dreden G, Loeffler JP, Grimm C, Hollt V (1988) Influence of calcium ions on proopiomelanocortin mRNA levels in clonal anterior pituitary cells. Neuroendocrinology 47: 32–37CrossRefGoogle Scholar
  18. White BA, Bancroft FC (1982) Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cells or tissue samples. J Biol Chem 257: 8569–8573PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • V. Höllt
    • 1
  • K. Feasey
    • 1
  • N. Kley
    • 2
  • I. Moneta
    • 1
  • B. Morris
    • 2
  1. 1.Physiologisches InstitutUniversität MünchenMünchen 2Germany
  2. 2.Max-Planck-Institut für PsychiatrieMartinsriedGermany

Personalised recommendations