Skip to main content

Differential Effects and Receptors of Corticosteroids in the Brain: Implications for Psychopathophysiology

  • Conference paper
Neuropsychopharmacology
  • 60 Accesses

Abstract

Corticosteroids are of critical importance for homeostasis (Selye 1976; Munck et al. 1984; Levine et al. 1978; McEwen et al. 1986a). The steroids control basal activities in the animal throughout the circadian cycle and restore disturbances in homeostasis induced by stress (De Kloet et al. 1987; Dallman et al. 1987). Our research has indicated that these two modes of homeostatic control are regulated via distinct corticosteroid receptor systems that alter the genomic expression of the nerve cell (De Kloet et al. 1987; De Kloet and Reul 1987). Corticosteroid binding to these intracellular receptors in the limbic brain acts in concert with peptide and amine components of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis. These interactions provide a complex linkage between adrenocortical function and neural processes involved in maintaining homeostasis and facilitating adaptation (De Wied and De Kloet 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antakly T, Sasaki A, Liotta AS, Palkovits M, Krieger DT (1985) Induced expression of the glucocorticoid receptor in the rat intermediate pituitary lobe. Science 229: 277–279

    Article  PubMed  CAS  Google Scholar 

  • ArrizaJL, Simerly RB, Swanson LW, Evans RM (1988) The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1: 887–900

    Article  Google Scholar 

  • Baulieu EE (1987) Steroid hormone antagonists at the receptor level: a role for the heat shock protein MW 90,000 (hsp90). J Cell Biochem 35: 161–174

    Article  PubMed  CAS  Google Scholar 

  • Bohus B, De Kloet ER, Veldhuis HD (1982) Adrenal steroids and behavioral adaptation: relationship to brain corticoid receptors. In: Ganten D, Pfaff DW (eds) Adrenal actions on brain. (Current topics in neuroendocrinology, vol 2 ). Springer, Berlin Heidelberg New York, pp 107–148

    Google Scholar 

  • Brody MJ, Fink GD, Buggy J, Haywood JR, Gordon FJ, Johnson AK (1978) The role of anteroventral third ventricle (AV3V) region in experimental hypertension. Circ Res 43: 12113

    Google Scholar 

  • Dallman MF, Akana SF, Cascio CS, Darlington DN, Jacobson L, Levin N (1987) Regulation of ACTH secretion: variation on a theme of B. Prog Horm Res 43: 113–173

    CAS  Google Scholar 

  • De Kloet ER, Reul JMHM (1987) Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 12: 83–105

    Article  PubMed  Google Scholar 

  • De Kloet ER, Van der Vies J, De Wied D (1974) The site of the suppressive action of dexamethasone on pituitary-adrenal activity. Endocrinology 94: 61–73

    Article  PubMed  Google Scholar 

  • De Kloet ER, Wallach G, McEwen BS (1975) Differences in corticosterone and dexamethasone binding to rat brain and pituitary. Endocrinology 96: 598–609

    Article  PubMed  Google Scholar 

  • De Kloet ER, Burbach JPH, Mulder GH (1977) Localization and role of transcortin-like molecules in the anterior pituitary. Mol Cell Endocrinol 7: 261–273

    Article  PubMed  Google Scholar 

  • De Kloet ER, Koväcs GL, Szabo G, Telegdy G, Bohus B, Versteeg DHG (1982) Decreased serotonin turnover in dorsal hippocampus of rat brain shortly after adrenalectomy: selective normalization after corticosterone substitution. Brain Res 239: 659–663

    Article  PubMed  Google Scholar 

  • De Kloet ER, Versteeg DHG, Koväcs GL (1983) Aldosterone blocks the response to corticosterone in the raphe-hippocampus serotonin system. Brain Res 264: 323–327

    Article  PubMed  Google Scholar 

  • De Kloet ER, Sijbesma H, Reul JMHM (1986) Selective control by corticosterone of 5HTl receptor capacity in raphe-hippocampal system. Neuroendocrinology 42: 513–521

    Article  PubMed  Google Scholar 

  • De Kloet ER, Ratka A, Reul JMHM, Sutanto W, Van Eekelen JAM (1987) Corticosteroid receptor types in brain: regulation and putative function. Ann NY Acad Sei 512: 351–361

    Article  Google Scholar 

  • De Kloet ER, De Kock S, Schild V, Veldhuis HD (1988a) Antiglucocorticoid RU 38486 attenuates retention of a behaviour and disinhibits the hypothalamic-pituitary adrenal axis at different sites. Neuroendocrinology 47: 109–115

    Article  PubMed  Google Scholar 

  • De Kloet ER, Rosenfeld P, Van Eekelen JAM, Sutanto WS, Levine S (1988 b) Stress, glucocorticoids and development. Prog Brain Res 73: 101–120

    Google Scholar 

  • De Kloet ER, Vanden Berg DTWM, Van Dijken H, Vander Peet E, Sutanto W, de Jong W (1988) Brain corticosteroid receptors and central cardiovascular control. Seoeno Symposia, vol 57. Raven, New York, pp 121–135

    Google Scholar 

  • De Kock S, De Kloet ER (1987) Neurotrophic peptide ACTH-(4-10) permits glucocorticoid- facilitated retention of acquired immobility response of hypophysectomized rats. Eur J Pharmacol 141: 461–466

    Article  PubMed  Google Scholar 

  • De Wied D (1964) The site of the blocking action of dexamethasone on stress-induced pituitary ACTH release. J Endocrinol 29: 29–37

    Article  Google Scholar 

  • De Wied D, De Kloet ER (1987) Pro-opiomelanocortin as homeostatic control system. Ann NY Acad Sei 512: 333–340

    Article  Google Scholar 

  • Edwards CRW, Burt D, Mclntyre MA, De Kloet ER, Stewart PM, Brett L, Sutanto W, Monder C (1988) Localization of 11 beta hydroxysteroid dehydrogenase: tissue specific protector of the mineralocorticoid receptor. Lancet 2: 986–990

    Article  PubMed  CAS  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889– 895

    Google Scholar 

  • Funder JW, Pearce PT, Smith AI (1988) Mineralocorticoid action: target tissues specificity is enzyme, not receptor, mediated. Science 242: 583–585

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Wikström AC, Ökret A, Agnati LF, Härfstrand F, Yu ZY, Granholm L, Zoli M, Vale WW, GustafssonJA (1985) Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptors. Endocrinology 117: 1803–181

    Article  PubMed  CAS  Google Scholar 

  • Gee KW, Bolger MB, Brinton RE, Coirini H, McEwen BS (1988) Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J Pharm Exp The 246: 803–812

    Google Scholar 

  • Gispen WH, De Koning, Kuiters RRF, Van der Zee CEEM, Verhaagen J (1987) On the neurotrophic action of melanocortins. Prog Brain Res 72: 319–333

    Article  PubMed  CAS  Google Scholar 

  • GustafssonJ, Carlstedt-Duke J, Poellinger L, Ökret S, Wikström A, Bronnegard M, Gillner M, DongY, Fuxe K, Cintra A, Härfstrand A, Agnati L (1987) Biochemistry, molecular biology and physiology of the glucocorticoid receptors. Endocr Rev 8: 185–234

    Article  Google Scholar 

  • HolsboerF (1988) Implication of altered limbic-hypothalamic-pituitary-adrenocortical (LHPA) function for neurobiology of depression. Acta Psychiatr Scand 77 [Suppl 34]: 72–111

    Article  Google Scholar 

  • Holsboer F, Gerken A, Stalla GK, Müller OA (1987a) Blunted aldosterone and ACTH release after human CRH administration in depressed patients. Am J Psychiatr 144:229– 231

    Google Scholar 

  • Holsboer F, Von Bardeleben U, Wiedemann K, Müller OA, Stalla GK (1987 b) Serial assessment of corticotropin releasing hormone response after dexamethasone in depression: implications for pathophysiology of DST non suppression. Biol Psychol 22: 228–234

    Google Scholar 

  • Jones MT, Gillham B (1988) Factors involved in the regulation of adrenocorticotrophic hormone//Mipotrophic hormone. Physiol Rev 68: 744–800

    Google Scholar 

  • Krozowski ZD, FunderJW (1983) Renal mineralocorticoid receptors and hippocampal corticosterone binding species have identical intrinsic steroid specificity. Proc Natl Acad Sei USA 80: 6056–6060

    Article  CAS  Google Scholar 

  • Lambert JJ,Peters JA, Cottrell GA (1987) Actions of synthetic and endogenous steroids on the GABAa receptor. TIPS 8: 224–227

    Google Scholar 

  • LandfieldP (1987) Modulation of brain aging correlates by long-term alterations of adrenal steroids and neurally active peptides. Prog Brain Res 72: 279–301

    Article  Google Scholar 

  • Le Goascogne C, Röbel P, Gouezou M, Sananes N, Baulieu EE, Waterman M (1987) Neurosteroids: cytochrome P-450scc in rat brain. Science 237: 1212–1215

    Article  PubMed  Google Scholar 

  • Levine S, Mullins RF (1966) Hormonal influences on brain organization in infant rats. Science 152: 1585–1592

    Article  PubMed  CAS  Google Scholar 

  • Levine S, Weinberg J, Ursin H (1978) Definition of the coping process and statement of the problem. In: Levine S, Ursin H (eds) Psychobiology of stress. Academic, New York, pp 3–21

    Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232: 1004–1007

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (1987) Glucocorticoid-biogenic amine interaction in relation to mood and behaviour. Biochem Pharmacol 36: 1755–1763

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Pfaff DW (1985) Hormone effects on hypothalamic neurons: analyzing gene expression and neuromodulator action. Trends Neurosci 8: 105–110

    Article  CAS  Google Scholar 

  • McEwen BS, Weiss JM, Schwartz LS (1968) Selective retention of corticosterone by limbic structures in rat brain. Nature 220: 911–912

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, De Kloet ER, Rostene W (1986a) Adrenal steroid receptors and actions in the nervous system. Physiol Rev 66: 1121–1188

    PubMed  CAS  Google Scholar 

  • McEwen BS, Lambden LT, Rainbow TC, Denicola AF (1986b) Aldosterone effects on salt appetite in adrenalectomized rats. Neuroendocrinology 43: 38–46

    Article  PubMed  CAS  Google Scholar 

  • MeaneyMJ, Aitken DH, Van Berkel C, Bhatnagar S, Sapolsky RM (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239: 766–768

    Article  Google Scholar 

  • Munck A, GuyrePM, HolbrockNJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5: 25–44

    Article  PubMed  CAS  Google Scholar 

  • Ratka A, De Kloet ER (1988) Vasopressin and adrenalectomy-induced sensitivity to morphine. Eur J Pharmacol 153: 65–71

    Article  PubMed  CAS  Google Scholar 

  • Ratka A, Sutanto W, De Kloet ER (1988) Long-term glucocorticoid suppression of opioid- induced antinociception. Neuroendocrinology 48: 439–444

    Article  PubMed  CAS  Google Scholar 

  • Ratka A, Sutanto W, Bloemers M, De Kloet ER (1989) On the role of brain mineralcorticoid (type 1) and glucocorticoid (type 2) receptors in neuroendocrine regulation. Neuroendocrinology 50: 117–123

    Article  PubMed  CAS  Google Scholar 

  • Reul JMHM, De Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117: 2505–2512

    Article  PubMed  CAS  Google Scholar 

  • Reul JMHM, Van den Bosch F, De Kloet ER (1987) Differential response of type I and type II corticosteroid receptors to changes in plasma steroid level and circadian rhythmicity. Neuroendocrinology 45: 407–412

    Article  PubMed  CAS  Google Scholar 

  • Reul JMHM, Tonnaer JADM, De Kloet ER (1988) Neurotrophic ACTH analog promotes plasticity of type I corticosteroid receptor in brain of senescent rats. Neurobiol Aging 9: 253–260

    Article  PubMed  CAS  Google Scholar 

  • Reul JMHM, Pearce PT, Funder JW, Krozowski ZS (1989) Type 1 and type 2 corticosteroid receptor gene expression in the rat: effect of adrenalectomy and dexamethasone administration. Mol. Endocrinology

    Google Scholar 

  • Sakly M, Koch B (1981) Ontogenesis of the glucocorticoid receptor in the anterior pituitary gland: transient dissociation among cytoplasmic receptor density,nuclear uptake and regulation of corticotropic activity. Endocrinology 108: 591–596

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, Meaney M (1986) Maturation of the adrenal stress response: neuroendocrine control mechanism and the stress hyperesponsive period. Brain Res Rev 11: 65–76

    Article  CAS  Google Scholar 

  • Sapolsky RM, Krey LM, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7: 282–301

    Article  Google Scholar 

  • Seger M, Van Eekelen JAM, Kiss JZ, Burbach JPH, De Kloet ER (1988) Stimulation of proopiomelanocortin gene expression by glucocorticoids in the denervated rat intermediate pituitary gland. Neuroendocrinology 47: 350–357

    Article  PubMed  CAS  Google Scholar 

  • Selye H (1952) The story of the adaption syndrome. Medical Publishers, Montreal

    Google Scholar 

  • Selye H (1976) Stress in health and disease. Butterworth, London

    Google Scholar 

  • Stewart PM, Wallace AM, Valentino R, Burt D, Shackleton CH, Edwards RW (1987) Mineralocorticoid activity of liquorice: 11–beta-hydroysteroid dehydrogenase deficiency comes of age. Lancet 2: 821–824

    Article  PubMed  CAS  Google Scholar 

  • Stone E, McEwen BS, Herrera AS, Carr KD (1987) Regulation of a and ß components of noradrenergic cyclic AMP response in cortical slices. Eur J Pharm 141: 347–356

    Article  CAS  Google Scholar 

  • Sutanto W, De Kloet ER (1987) Species-specificity of corticosteroid receptors in hamster and rat brains. Endocrinology 121: 1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Sutanto WS, Handelmann G, De Bree F, De Kloet ER (1989) Multifacetted interaction of corticosteroids with the intracellular receptors and with membraneGABAa receptor complex in the rat brain. J Neuroendocrinol, in press

    Google Scholar 

  • Swanson LW (1987) The hypothalamus. In: HökfeltT, BjörklundA, Swanson LW (eds) Handbook of chemical neuroanatomy: integrated system of the CNS, vol 5, Elsevier, Amsterdam, pp 1–124

    Google Scholar 

  • Tausk M (1951) Hat die Nebenniere tatsächlich eine Verteidigungsfunktion. In: Das Hormon, vol 3. Organon, The Netherlands, p 1–3

    Google Scholar 

  • Van Eekelen JAM, Kiss JZ, Westphal HM, De Kloet ER (1987) Immunocytochemical study on the intracellular localization of the type 2 glucocorticoid receptor in the rat brain. Brain Res 436: 120–128

    Article  PubMed  Google Scholar 

  • Van Eekelen JAM, Jiang W, De Kloet ER, Bohn MC (1988) Distribution of the mineralocorticoid and glucocorticoid mRNA’s in the rat hippocampus: an in situ hybridization study. J Neurosci Res 21: 88–94

    Article  PubMed  Google Scholar 

  • Veldhuis HD, Van Koppen C, Van Ittersum M, De Kloet ER (1982) Specificity of the adrenal steroid receptor system in the rat hippocampus. Endocrinology 110: 2044–2051

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Kloet, E.R. (1990). Differential Effects and Receptors of Corticosteroids in the Brain: Implications for Psychopathophysiology. In: Bunney, W.E., Hippius, H., Laakmann, G., Schmauss, M. (eds) Neuropsychopharmacology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74034-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74034-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74036-7

  • Online ISBN: 978-3-642-74034-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics