Skip to main content

Regulation der Transkription in Eukaryoten und Prokaryoten: ein gemeinsamer Mechanismus

  • Chapter
Genregulation
  • 32 Accesses

Zusammenfassung

Es sind verschiedene Beispiele eukaryotischer Gene bekannt, die sich von den λ Genen durch eine Besonderheit unterscheiden: Ihre Transkription wird aktiviert, wenn ein Protein an eine DNA-Sequenz bindet, die mehrere hundert Basenpaare vom Startpunkt der RNA entfernt liegt. Zu diesen Beispielen gehören menschliche Gene ebenso wie Gene von Nagern und Gene aus der Hefe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogenhagen DF, Wormington WM, Brown DD (1982) Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated State. Cell 28: 413–421

    Article  PubMed  CAS  Google Scholar 

  2. Bram RJ, Kornberg RD (1985) Specific protein binding to far upstream activating sequences in Polymerase II proteins. Proc Natl Acad Sci USA 82: 43–47

    Article  PubMed  CAS  Google Scholar 

  3. Brent R, Ptashne M (1984) A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene. Nature 312: 613–616

    Article  Google Scholar 

  4. Brent R, Ptashne M (1985) A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43: 729–736

    Article  PubMed  CAS  Google Scholar 

  5. Brown DD (1984) The role of stable complexes that repress and activate eukaryotic genes. Cell 37: 359–365

    Article  PubMed  CAS  Google Scholar 

  6. Dandanell G, Hammer K (1985) Two Operators separated by 599 base pairs are required for deoR repression of the deoR operon of Escherichia coli. EMBO J 4: 3333–3338

    PubMed  CAS  Google Scholar 

  7. Dunn T, Hahn S, Ogden S, Schleif R (1984) An araBAD operator at -280 base pairs that is required for PBAD repression: addition of DNA helical turns between the operator and promoter eyelieally hinders repression. Proc Natl Acad Sci USA 81: 5017–5020

    Article  PubMed  CAS  Google Scholar 

  8. Frederick CA, Grable J, Melia M et al. (1984) Kinked DNA in crystalline complex with EcoR1 endonuclease. Nature 309: 327–331

    Article  PubMed  CAS  Google Scholar 

  9. Gidoni D, Kadonaga JT, Barrera-Saldona H, Takahashi K, Chambon P, Tjian R (1985) Bidirectional SV 40 transcription mediated by tandem Sp1 binding interactions. Science 230: 511–517

    Article  PubMed  CAS  Google Scholar 

  10. Giniger E, Varnum SM, Ptashne M (1980) Specific DNA-binding of GAL4, a positive reguiatory protein of yeast. Cell 40: 767–774

    Article  Google Scholar 

  11. Hochschild AH, Ptashne M (1986) Cooperative binding of lambda repressors to sites separated by integral turns of the DNA helix. Cell 44: 681–687

    Article  PubMed  CAS  Google Scholar 

  12. Hope IA, Struhl K (1985) GCN4 protein, synthesized in vitro, binds H153 reguiatory sequences: implications for general control of amino acid biosynthetic operons in yeast. Cell 43: 177–188

    Article  PubMed  CAS  Google Scholar 

  13. Irani MH, Orosz L, Adhya S (1983) A control element within a structural gene: the GAL operaon of Escherichia coli. Cell 32: 783–788

    Article  PubMed  CAS  Google Scholar 

  14. Johnson A, Herskowitz I (1985) A repressor (MAT α2 produet) and its operator control expression of a set of cell type specific genes in yeast. Cell 42: 237–247

    Article  PubMed  CAS  Google Scholar 

  15. Jones KA, Yamamoto KR, Tjian R (1985) Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell 42: 559–572

    Article  PubMed  CAS  Google Scholar 

  16. KeeganL, Gill G, Ptashne M (1986) Separation of DNA-binding from the transcription-activation function of a eukaryotic regulatory protein. Science 231: 699–704

    Article  Google Scholar 

  17. Lassar AB, Martin PL, Roeder RG (1983) Transcription of class III genes: formation of preinitiation complexes. Science 222: 740–748

    Article  PubMed  CAS  Google Scholar 

  18. Majumdar A, Adhya S (1984) Demonstration of two operator elements in gal. Proc NatI Acad Sci USA 81: 6100–6104

    Article  CAS  Google Scholar 

  19. Myers RM, Kligman M, Tjian R (1981) Does simian virus 40 antigen unwind DNA? J Biol Chem 256: 10156–10160

    PubMed  CAS  Google Scholar 

  20. Sawadogo M, Roeder RG (1985) Interaction of a gene-speeifie transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43: 165–171

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi K, Vigneron M, Metthes H, Wildeman A, Zenke M, Chambon P (1985) Stereospecific alignments are required for initiation from the SV40 early promoter. Nature 319: 121–126

    Article  Google Scholar 

  22. Topol J, Rüden DM, Parker CS (1985) Sequences required for in vitro transcriptional activation of a Drosophila hsp 70 gene. Cell 42: 527–537

    Article  PubMed  CAS  Google Scholar 

  23. Ptashne M (1986) Gene regulation by proteins acting nearby and at a distance. Nature 322.: 697–701

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ptashne, M. (1989). Regulation der Transkription in Eukaryoten und Prokaryoten: ein gemeinsamer Mechanismus. In: Genregulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74022-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74022-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50236-4

  • Online ISBN: 978-3-642-74022-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics