General Strategies for the Asymmetric Synthesis of Oxygenated Natural Products

  • Stephen F. Martin
Conference paper


Several years ago we initiated a program that was directed toward the design and development of general strategies that could be expeditiously applied to the formulation of concise, total syntheses of enantiomerically pure, oxygenated natural products. Some targets of considerable interest and obvious importance in this regard include: KDO (3 deoxy-D-manno-octulopyranosate) (1), which is a higher monosaccharide found in the cell wall of Gram-negative bacteria;1,2 the antibiotic tirandamycin A (2) as well as its degradation product tirandamycic acid (3);3,4 Prelog-Djerassi lactone (4), which is obtained from the degradation of several macrolide antibiotics including methymycin (5);5,6other medicinally important macrolide antibiotics such as the erythromycins A (6) and B (7);5,7 and the ansa antibiotics macbecin (8) and herbimycin A (9), which are potential anticancer agents.8,9


Macrolide Antibiotic Total Synthesis Asymmetric Synthesis Aldol Reaction Allylic Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    Unger, F. M. Adv. Carbohydr. Chem. Biochem. 1981, 38, 323.CrossRefGoogle Scholar
  2. 2.(a)
    Schmidt, R. R.; Betz, R. Angew. Chem. Int. Ed. Engl. 1984, 23, 430.CrossRefGoogle Scholar
  3. (b).
    Danishefsky, S. J.; Pearson, W. H.; Segmuller, B. E. J. Am. Chem. Soc. 1985, 107, 1280.CrossRefGoogle Scholar
  4. 3.(a)
    Meyer, C. E. J. Antibiot. 1971, 24, 558.PubMedGoogle Scholar
  5. (b).
    MacKellar, F. A.; Grostic, M. F.; Olson, E. C.; Wnuk, R. J.; Branfman, A. R.; Rinehart, Jr., K. L. J. Am. Chem. Soc. 1971, 93, 4943.PubMedCrossRefGoogle Scholar
  6. (c).
    Reusser, F. Infect. Immun. 1970,2, 77, 82PubMedGoogle Scholar
  7. 4.(a)
    For summary accounts of leading synthetic efforts, see: Ireland, R. E.; Wuts, P. G. M.; Ernst, B. J. Am. Chem. Soc. 1981, 103, 3205.CrossRefGoogle Scholar
  8. (b).
    Ziegler, F. E.; Wester, R. T. Tetrahedron Lett. 1984, 25, 617.CrossRefGoogle Scholar
  9. (c).
    DeShong, P.; Ramesh, S.; Perez, J. J. J. Org. Chem. 1983, 48, 2117.CrossRefGoogle Scholar
  10. (d).
    Martin, S. F.; Gluchowski, C.; Campbell, C. L.; Chapman, R. C. J. Org. Chem. 1984, 49, 2512; Tetrahedron, in pressCrossRefGoogle Scholar
  11. (e).
    DeShong, P.; Ramesh, S.; Elango, V.; Perez, J. J. J. Am. Chem. Soc. 1985, 107, 5219.CrossRefGoogle Scholar
  12. (f).
    Schlessinger, R. H.; Berbemitz, G. R.; Lin, P.; Poss, A. J. J. Am. Chem. Soc. 1985, 107, 1777.CrossRefGoogle Scholar
  13. (g).
    Boeckman, Jr., R. K.; Starrett, Jr., J. E.; Nickell, D.G.; Sum, P.-E. J. Am. Chem. Soc. 1986, 108, 5549.CrossRefGoogle Scholar
  14. (h).
    Neukom, C.; Richardson, D. P.; Myerson, J. H.; Bartlett, P. A. J. Am. Chem. Soc. 1986, 108, 5559.CrossRefGoogle Scholar
  15. 5.(a)
    For reviews of macrolide antibiotics, see: Masamune, S.; Bates, G. S.; Corcoran, J. W. Angew. Chem. Int. Ed. Engl. 1977, 16, 585.PubMedCrossRefGoogle Scholar
  16. (b).
    Nicolaou, K. C. Tetrahedron, 1911,33, 683.CrossRefGoogle Scholar
  17. (c).
    Back, T. G. Ibid. 1977, 33, 3041.Google Scholar
  18. (d).
    Paterson, I.; Mansuri, M. M. Ibid. 1985, 41, 3569.Google Scholar
  19. 6.
    For recent syntheses of Prelog-Djerassi lactone, see: Martin, S. F.; Guinn, D. E. J. Org. Chem. 1987, 52, 5588 and references cited therein.CrossRefGoogle Scholar
  20. 7.(a)
    For some synthetic work in the erythromycin field, see: Corey, E. J. et al. J. Am. Chem. Soc. 1978, 100, 4618, 4620; Ibid. 1979, 101, 7131CrossRefGoogle Scholar
  21. (b).
    Masamune, S.; Hirama, M.; Mori, S.; Ali, S. A.; Garvey, D. S. Ibid. 1981, 103, 1568.Google Scholar
  22. (c).
    Woodward, R. B. et al. Ibid. 1981, 103, 3210.Google Scholar
  23. (d).
    Stork, G.; Paterson, I.; Lee, F. K. C. Ibid. 1982, 104, 4686.Google Scholar
  24. (e).
    Vedejs, E.; Dolphin, J. M.; Mastalerz, H. Ibid. 1983, 105,127.Google Scholar
  25. (f).
    Oikawa, Y.; Nishi, T.; Yonemitsu, O. J. Chem. Soc. Perkin Trans. 71985, 1, 7, 19, 27.Google Scholar
  26. (g).
    Heathcock, C. H.; Young, S. D.; Hagen, J. P.; Pilli, R.; Badertscher, U. J. Org. Chem. 1985,50, 2095.CrossRefGoogle Scholar
  27. (h).
    Danishefsky, S. J.; Larson, E.; Askin, D.; Kato, N. J. Am. Chem. Soc. 1985, 107, 1246.CrossRefGoogle Scholar
  28. (i).
    Kobayashi, Y.; Uchiyama, H.; Kanbara, H.; Sato, F. Ibid. 1985, 107, 5541.Google Scholar
  29. (j).
    Bemet, B.; Bishop, P. M.; Caron, M.; Kawamata, T.; Roy, B. L.; Ruest, L.; Sauve, G.; Soucy, P.; Deslongchamps, P. Can. J. Chem. 1985, 63, 2810, 2814, 2818.CrossRefGoogle Scholar
  30. (k).
    Burke, S. D.; Schoenen, F. J.; Murtiashaw, C. W. Tetrahedron Lett. 1986,27, 449.CrossRefGoogle Scholar
  31. (l).
    Kinoshita, M.; Arai, M.; Tomooka, K.; Nakata, M. Ibid. 1986, 27, 1811.Google Scholar
  32. (m).
    Kinoshita, M.; Arai, M.; Ohsawa, N.; Nakata, M. Ibid. 1986, 27, 1815.Google Scholar
  33. (n).
    Sviridov, A. F.; Ermolenko, M. S.; Yashunsky, D. V.; Borodkin, V. S.; Kochetkov, N. K. Ibid. 1987, 28, 3835, 3839.Google Scholar
  34. (o).
    Burke, S. D.; Schoenen, F. J.; Nair, M. S. Ibid. 1987, 28, 4143.Google Scholar
  35. (p).
    Burke, S. D.; Chandler, III, A. C.; Nair, M. S.; Campopiano, O. Ibid. 1987, 28, 4147.Google Scholar
  36. (q).
    Tone, H.; Nishi, T.; Oikawa, Y.; Hikota, M.; Yonemitsu, O. Ibid. 1987, 28, 4569.Google Scholar
  37. (r).
    Stork, G.; Rychnovsky, S. D. J. Am. Chem. Soc. 1987, 109, 1564.CrossRefGoogle Scholar
  38. 8.(a)
    Tanida, S.; Hasegawa, T.; Higashide, E. J. Antibiotics 1980, 33, 199.Google Scholar
  39. (b).
    Muroi, M.; Izawa, M.; Kosai, Y.; Asai, M. Ibid. 1980, 33, 201.Google Scholar
  40. (c).
    Muroi, M.; Haibara, K.; Asai, M.; Kamiya, K.; Kishi, T. Tetrahedron 1981, 37, 1123.CrossRefGoogle Scholar
  41. (d).
    Omura, S.; Nakagawa, A.; Sadakane, N. Tetrahedron Lett. 1979, 4323.Google Scholar
  42. (e).
    Turusaki, A.; Matsumoto, T.; Nakagawa, A.; Omura, S. J Antibiotics, 1980, 33, 781.Google Scholar
  43. 9.(a)
    For synthetic approaches to macbecin, see: Evans, D. A.; Omstein, P. L.; Ennis, M. D. 187th American Chemical Society National Meeting, April 8–13, St. Louis, 1984, MEDI-154.Google Scholar
  44. (b).
    Baker, R.; Cummings, W. J.; Hayes, J. F.; Kumar, A. J. Chem. Soc. Chem. Commun. 1986, 1237.Google Scholar
  45. 10.(a)
    For some leading references, see: Elming, N. in “Advances in Organic Chemistry,” Raphael, R. A.; Taylor, E. C.; Wynberg, H., Eds., Interscience: New York, 1960; Vol. II, p 67.Google Scholar
  46. (b).
    Achmatowicz, Jr., O.; Bukowski, P.; Szechner, B.; Zwierzchowska, Z.; Zamojski, A. Tetrahedron 1971, 27, 1973.CrossRefGoogle Scholar
  47. (c).
    Achmatowicz, Jr., O.; Bielski, R. Carbohydr. Res. 1977, 55, 165.PubMedCrossRefGoogle Scholar
  48. (d).
    Piancatelli, G.; Scettri, A.; D’Auria, M. Tetrahedron 1980, 36, 661.CrossRefGoogle Scholar
  49. (e).
    Weeks, P. D.; Brennan, T. M.; Brannegan, D. P.; Kuhla, D. E.; Elliot, M. L.; Watson, H. A.; Wlodecki, B.; Breitenbach, R. J. Org. Chem. 1980, 45, 1109.CrossRefGoogle Scholar
  50. (f).
    Shono, T.; Matsumura, Y.; Tsubata, K.; Takata, J. Chem. Lett. 1981, 1121.Google Scholar
  51. (g).
    Georgiadis, M. P.; Couladouros, E. A.; Polissiou, M. K.; Filippakis, S. E.; Mentzafos, D.; Terzis, A. J. Org. Chem. 1982, 47, 3054.CrossRefGoogle Scholar
  52. (h).
    Graziano, M. L.; Iesce, M. R.; Carli, B.; Scarpati, R. Synthesis 1983, 125.Google Scholar
  53. (i).
    Ho, T.-L; Sapp, S. G. Synth. Commun. 1983, 13, 207.CrossRefGoogle Scholar
  54. 11.(a)
    For applications of similar strategies to natural product synthesis, see: References 4b-d, 6, 10b, c.Google Scholar
  55. (b).
    Achmatowicz, Jr., O.; Grynkiewicz, G.; Szechner, B. Tetrahedron 1976, 32, 1051.CrossRefGoogle Scholar
  56. (c).
    Suzuki, K.; Yuki, Y.; Mukaiyama, T. Chem. Lett. 1981, 1529.Google Scholar
  57. (d).
    Szechner, B. Tetrahedron 1981, 37, 949.CrossRefGoogle Scholar
  58. (e).
    Dziewiszek, K.; Chmielewski, M.; Zamojski, A. Carbohydr. Res. 1982, 104, Cl.CrossRefGoogle Scholar
  59. (f).
    Jurczak, J.; Pikul, S. Tetrahedron Lett. 1984, 25, 3107.CrossRefGoogle Scholar
  60. (g).
    Bromidge, S.M.; Sammes, P.G.; Street, L. J. J. Chem. Soc. Perkin Trans. 1, 1985, 1725.CrossRefGoogle Scholar
  61. (h).
    Sammes, P. G.; Street, L. J.; Whitby, R. J. Ibid. 1986, 281.Google Scholar
  62. (i).
    Gunn, B.P. Heterocycles 1985, 23, 3061.CrossRefGoogle Scholar
  63. (j).
    DeShong, P.; Lin, M.-T.; Perez, J. J. Tetrahedron Lett. 1986, 27, 2091.CrossRefGoogle Scholar
  64. (k).
    Mori, K.; Kisida, H. Tetrahedron 1986, 42, 5281.CrossRefGoogle Scholar
  65. (l).
    Pikul, S.; Raczko, J.; Ankner, K.; Jurczak, J. J. Am. Chem. Soc. 1987, 109, 3981.CrossRefGoogle Scholar
  66. 12.(a)
    Molin, H.; Pring, B. G. Tetrahedron Lett. 1985, 26, 677.CrossRefGoogle Scholar
  67. (b).
    Higgins, C. Nature 1987, 327, 655.PubMedCrossRefGoogle Scholar
  68. (c).
    Hammond, S. M.; Claesson, A.; Jansson, A. M.; Larsson, L. -G.; Pring, B. G.; Town, C. M.; Ekstrom, B. Ibid. 1987, 327, 730.Google Scholar
  69. (d).
    Claesson, A.; Jansson, A. M.; Pring, B. G. ; Hammond, S. M.; Ekstrom, B. J. Med. Chem. 1987, 30, 2309.PubMedCrossRefGoogle Scholar
  70. (e).
    Goldman, R.; Kohlbrenner, W.; Lartey, P.; Pemet, A. Nature 1987, 329, 162.PubMedCrossRefGoogle Scholar
  71. 13.
    Jurczak, J.; Pikul, S.; Ankner, K. Tetrahedron Lett. 1986, 27, 1711.CrossRefGoogle Scholar
  72. 14.
    Minami, N.; Ko, S. S.; Kishi, Y. /. Am. Chem. Soc. 1982, 104, 1109.CrossRefGoogle Scholar
  73. 15.
    Pauls, H. W.; Fraser-Reid, B. J. Carbohydr. Chem. 1985, 4, 1.CrossRefGoogle Scholar
  74. 16.
    Nakata, T.; Oishi, T. Tetrahedron Lett. 1980, 26, 1641.CrossRefGoogle Scholar
  75. 17.(a)
    For reviews, see: Evans, D. A.; Nelson, J. V.; Taber, T. R. in “Topics in Stereochemistry;” Allinger, N. L.; Eliel, E. L.; Wilen, S. H., Eds.; Interscience: New York; 1982, Vol. 13, p 1.CrossRefGoogle Scholar
  76. (b).
    Heathcock, C. H. in “Asymmetric Synthesis, Stereodifferentiating Addition Reactions, Part B,” Morrison, J. D., Ed.; Academic Press: New York; 1984, Vol. 3, p 111.Google Scholar
  77. 18.(a)
    For reviews, see: Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1982, 21 555.CrossRefGoogle Scholar
  78. (b).
    Yamamoto, Y.; Maruyama, K. Heterocycles 1982, 18, 357.CrossRefGoogle Scholar
  79. (c).
    Yamamoto, Y. Aldrichimica Acta 1987, 20, 45. See alsoGoogle Scholar
  80. (d).
    Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J. Am. Chem. Soc. 1986, 108, 3422.CrossRefGoogle Scholar
  81. (e).
    Roush, W. R.; Palkowitz, A. D.; Palmer, M. A. J. Org. Chem. 1987, 52, 316.CrossRefGoogle Scholar
  82. (f).
    Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293.CrossRefGoogle Scholar
  83. (g).
    Garcia, J.; Kim, B. M.; Masamune, S. J. Org. Chem. 1987,52, 4831.CrossRefGoogle Scholar
  84. 19.
    Rice, K. C.; Dyer, J. R. J. Heterocyclic Chem. 1975, 12, 1325.CrossRefGoogle Scholar
  85. 20.
    Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127.CrossRefGoogle Scholar
  86. 21.(a)
    Buse, C. T.; Heathcock, C. H. Tetrahedron Lett. 1978, 1685.Google Scholar
  87. (b).
    Kishi, Y.; Nagaoka, H. Tetrahedron 1981, 37, 3873.CrossRefGoogle Scholar
  88. (c).
    Lewis, M. D.; Kishi, Y. Tetrahedron Lett. 1982, 23, 2343.CrossRefGoogle Scholar
  89. (d).
    Hiyama, T.; Okude, Y.; Kimura, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1982,55, 561 and previous work.CrossRefGoogle Scholar
  90. 22.(a)
    Paulsen, H.; Koebernick, W.; Koebernick, H. Tetrahedron Lett. 1976, 2297.Google Scholar
  91. (b).
    Plaumann, D. E.; Fitzsimmons, B. J.; Ritchie, B. M.; Fraser-Reid, B. J. Org. Chem. 1982, 47, 941.CrossRefGoogle Scholar
  92. 23.
    Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.CrossRefGoogle Scholar
  93. 24.(a)
    For examples of the importance of the steric bulk of the anomeric substituent in directing the stereochemical course of catalytic hydrogenations in related systems, compare: Jarosz, S.; Fraser-Reid, B. Tetrahedron Lett. 1981, 22, 2533.CrossRefGoogle Scholar
  94. (b).
    Isobe, M.; Ichikawa, Y.; Goto, T. Ibid. 1981, 22, 4287.Google Scholar
  95. (c).
    Hanessian, S.; Demailly, G.; Chapleur, Y.; Leger, S. J. Chem. Soc. Chem. Commun. 1981, 1125.Google Scholar
  96. (d).
    Schlessinger, R. H.; Poss, M. A. J. Am. Chem. Soc. 1982, 104, 357 and reference 13 therein.CrossRefGoogle Scholar
  97. 25.(a)
    Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. J. Org. Chem. 1984, 49, 3904.CrossRefGoogle Scholar
  98. (b).
    Imamoto, T.; Takiyama, N.; Nakamura, K. Tetrahedron Lett. 1985, 26, 4763.CrossRefGoogle Scholar
  99. 26.(a)
    Yamamoto, Y.; Yatagai, H.; Ishihara, Y.; Maeda, N.; Maruyama, K. Tetrahedron 1984, 40, 2239.CrossRefGoogle Scholar
  100. (b).
    Keck, G. E.; Boden, E. P. Tetrahedron Lett. 1984, ,25, 1879.CrossRefGoogle Scholar
  101. (c).
    Nakajima, N.; Hamada, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. J. Am. Chem. Soc. 1986, 108, 4645.CrossRefGoogle Scholar
  102. 27.(a)
    Masamune, S.; Sato, T.; Kim, B. M.; Wollmann, T. A. J. Am. Chem. Soc. 1986, 108, 8279.CrossRefGoogle Scholar
  103. (b).
    Paterson, I.; McClure, C. K. Tetrahedron Lett. 1987, 28, 1229.CrossRefGoogle Scholar
  104. 28.
    See for example in Heathcock, C. H.; Hagen, J. D.; Jarvi, E. T.; Pirrung, M. C.; Young, S. D. J. Am. Chem. Soc. 1981, 103, 4972.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Stephen F. Martin
    • 1
  1. 1.Department of ChemistryThe University of Texas at AustinAustinUSA

Personalised recommendations