Skip to main content

Oxygen Radicals in Experimental Brain Injury

  • Conference paper
Intracranial Pressure VII

Abstract

Brain injury remains a serious cause of mortality and morbidity, despite considerable efforts to improve its outcome. In our studies, we have assumed that at least some of its adverse consequences would be potentially reversible with appropriate therapy. We have, therefore, attempted to formulate proper therapies by a systematic approach, which, as an initial step, seeks to identify the mechanisms of the abnormalities in experimental brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J, Graham D, Murray L, Scott G (1982a) Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol 12:557–563

    Article  PubMed  CAS  Google Scholar 

  • Adams S, Mitchell D, Graham D, Doyle D (1982b) Diffuse damage of immediate impact type: its relationship to ‘primary brain-stem damage’ in head injury. Brain 100:489–502

    Article  Google Scholar 

  • Binder LM (1986) Persisting symptoms after mild head injury: A review of the post-concussive syndrome. J Clin Exp Neuropsychol 8(4):323–346

    Article  PubMed  CAS  Google Scholar 

  • DeWitt DS, Jenkins LW, Wei EP, Lutz H, Becker DP, Kontos HA (1986) Effects of fluid percussion brain injury on regional cerebral blood flow and pial vessel diameter. J Neurosurg 64:787–794

    Article  PubMed  CAS  Google Scholar 

  • Dixon CE, Lyeth BG, Povlishock JT et al. (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67: 110–119

    Article  PubMed  CAS  Google Scholar 

  • Dunford HB (1987) Free radicals in iron-containing systems. Free Radical Biology & Medicine 3:405–421

    Article  CAS  Google Scholar 

  • Ellis EF, Wright KF, Wei EP, Kontos HA (1981) Cyclooxygenase products of arachidonic acid metabolism in cat cerebral cortex after experimental concussive brain injury. J Neurosurg 56:695–698

    Google Scholar 

  • Ellis EF, Holt SA, Wei EP, Kontos HA (1989) Kinins induce abnormal vascular reactivity. Am J Physiol (in press)

    Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF (1983) Role of endothelium in responses for vascular smooth muscle. Circ Res 53:557–573

    PubMed  CAS  Google Scholar 

  • Graham DI, Lawrence AE, Adams JH, Doyle D, McLellan D, Gennarelli TA (1988) Pathology of mild head injury. In: Hoff J (ed) Mild head injury, vol 3, Contemporary issues in neurological surgery. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Gutteridge JMC, Rowley DA, Halliwell B (1981) Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Biochem J 199: 263–265

    PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Rowley DA, Halliwell B (1982) Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts. Biochem J 206:605–609

    PubMed  CAS  Google Scholar 

  • Hayes RL, Pechura CM, Katayama Y et al. (1984) Activation of pontine cholinergic sites implicated in unconsciousness following cerebral concussion in the cat. Science 233: 301–303

    Article  Google Scholar 

  • Jenkins LW, Marmarou A, Lewelt W, Becker DP (1986) Increased vulnerability of the traumatized brain in early ischemia. In: Baethman A, Go KG, Unterberg A (eds) Mechanisms of secondary brain damage. Plenum Press, New York, pp 273–281

    Google Scholar 

  • Jenkins LW, Moszynski K, Lyeth BG, Lewelt W, DeWitt DS et al. (1989) Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: The use of controlled second insult as a research tool. Brain Res (in press)

    Google Scholar 

  • Kim HJ, Levasseur JE, Patterson JL Jr, Madge GE, Povlishock JT, Kontos HA (1989) Reduction in mortality in experimental brain injury by pretreatment with indomethacin. J Neurosurg (submitted)

    Google Scholar 

  • Kontos HA, Wei EP (1985) Superoxide production in experimental brain injury. J Neurosurg 64:803–807

    Google Scholar 

  • Kontos HA, Wei EP, Povlishock JT, Dietrich WD, Magiera CJ, Ellis EF (1980) Cerebral arteriolar damage by arachidonic acid and prostaglandin G2. Science 209: 1242–1245

    Article  PubMed  CAS  Google Scholar 

  • Kontos HA, Wei EP, Jenkins LW, Povlishock JT, Rowe GT, Hess ML (1985) Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res 57:142–151

    PubMed  CAS  Google Scholar 

  • Kontos HA, Wei EP, Povlishock JT, Christman CW (1984) Oxygen radicals mediated the cerebral arteriolar dilation from arachidonate and bradykinin in cats. Circ Res 55:295–303

    PubMed  CAS  Google Scholar 

  • Kukreja RC, Kontos HA, Hess ML, Ellis EF (1986) PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res 59:612–619

    PubMed  CAS  Google Scholar 

  • Levasseur JE, Patterson JL Jr, Kontos HA (1989) Major reduction of mortality in severe experimental brain injury with superoxide dismutase. J Neurosurgery (submitted)

    Google Scholar 

  • Lewelt W, Jenkins LW, Miller JD (1980) Autoregulation of cerebral blood flow after experimental fluid percussion injury of the brain. J Neurosurg 53:500–511

    Article  PubMed  CAS  Google Scholar 

  • Lewelt W, Jenkins LW, Wei EP, Lutze H, Becker DP, Kontos HA (1983) Effects of fluid percussion brain injury on regional cerebral blood flow and pial vessel diameter. J Neurosurg 56:332–338

    Google Scholar 

  • Lyeth BG, Jenkins LW, Hamm RJ et al. (1987) Enduring short-term memory deficits in the absence of hippocampal cell death following moderate head injury in the rat. Soc Neur Abstr 13: 1253

    Google Scholar 

  • Marshall JJ, Kontos HA (1986) Independent mechanisms of blockade of endothelial-dependent and nitroprusside-induced cerebral dilation. FASEB J 2:A1290, 1988

    Google Scholar 

  • Misra HP, Fridovich I (1972) The generation of superoxide radical during the autooxidation of hemoglobin. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  • Orrenius S (1988) Mechanisms of oxidant-induced cell damage. J Cell Biochem [Suppl] 12A: 34

    Google Scholar 

  • Pilz P (1983) Axonal injury in head injury. Acta Neurochir (Wien) [Suppl] 32: 119–123

    CAS  Google Scholar 

  • Povlishock J (1986) Traumatically induced axonal damage without concomitant change in focally related neuronal somata and dendrites. Acta Neuropathol (Berl) 70: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Becker DP, Sullivan HG, Miller JD (1978) Vascular permeability alterations to horseradish peroxidase in experimental brain injury. Brain Res 153:223–239

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Becker DP, Cheng CLY, Vaughan GW (1983) Axonal change in minor head injury. J Neuropathol Exp Neurol 42:225–242

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Williams JI, Wei EP, Kontos HA (1988) Histochemical demonstration of superoxide in cerebral vessels. FASEB J 2:A835

    Google Scholar 

  • Rosenblum WI, Wei EP, Kontos HA (1982) Platelet aggregation in cerebral arterioles after percussive brain trauma. J Texas Heart Inst 9:345–348

    CAS  Google Scholar 

  • Strich S (1961) Shearing of nerve fibers as a cause of brain damage due to head injury. Lancet 11:443–448

    Article  Google Scholar 

  • Sullivan HG, Martinez AJ, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45: 520–534

    Article  Google Scholar 

  • Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA (1980) Functional, morphologic and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res 46: 37–47

    PubMed  CAS  Google Scholar 

  • Wei EP, Kontos HA, Dietrich WD, Povlishock JT, Ellis EF (1981) Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Circ Res 48:95–103

    PubMed  CAS  Google Scholar 

  • Wei EP, Lamb RG, Kontos HA (1982) Increased phospholipase C activity after experimental brain injury. J Neurosurg 56:695–698

    Article  PubMed  CAS  Google Scholar 

  • Wei EP, Christman CW, Kontos HA, Povlishock JT (1985) Effects of oxygen radicals on cerebral arterioles. Am J Physiol 248:H157–H162

    PubMed  CAS  Google Scholar 

  • Wei EP, Ellison MD, Kontos HA, Povlishock JT (1986) O2 radicals in arachidonate-induced increased blood-brain barrier permeability to proteins. Am J Physiol 251: H693–H699

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kontos, H.A. (1989). Oxygen Radicals in Experimental Brain Injury. In: Hoff, J.T., Betz, A.L. (eds) Intracranial Pressure VII. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73987-3_208

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73987-3_208

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73989-7

  • Online ISBN: 978-3-642-73987-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics