Ecodynamics pp 113-126 | Cite as

Understanding the Baltic Sea: Systems Ecology in Theory and Practice

  • F. Wulff
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


Studies on whole ecosystems have usually been motivated by man’s growing ability to perturb larger and larger systems. Experience have shown that we cannot explain these changes based on studies on organisms and populations alone (Mann 1982). However, the theoretical basis for explaining natural processes becomes weaker and weaker as one moves up the ecological hierarchy, from individuals to populations and finally to whole ecosystems. Studies of whole ecosystems are usually both difficult and expensive and necessitate interdisciplinary cooperation of a nature that most ecologists, usually with their roots in “biological natural history”, are quite untrained for. Ecosystem ecologists have often been criticised for a lack of good scientific foundations in their work (Lehman 1986). In the 1960’s, many ecosystem projects were started where ecologists and systems engineers were working together hoping to develop predictions of ecosystem changes using powerful computers and large complex mathematical models. These reductionistic models had little practical success (Patten and Finn 1979) and it has become more and more apparent that a holistic approach, where the properties of the whole system is considered, is necessary (Platt et al. 1981)


Deep Basin Biological Oceanography Anoxic Bottom Joint Monitoring Programme Ecosystem Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackefors, H., L. Hernroth, O. Lindahl and F. Wulff 1978. Production of phytoplankton and zooplank-ton in the Gulf of Bothnia. Finnish Mar. Res. 244:116–126.Google Scholar
  2. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil, F & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. EcoL Prog. Ser. 10, 257–263.CrossRefGoogle Scholar
  3. Cederwall, H. & R. Elmgren, 1980. Biomass increase of benthic macrofauna demonstrates eutrophi-cation of the Baltic Sea. — Ophelia, Suppl. 1:287–304.Google Scholar
  4. Cushing, D. H. 1971. A comparison of production in temperate seas and the upwelling areas. Trans. Roy. Soc. S. Afr. 40:17–33.CrossRefGoogle Scholar
  5. Dybern, B. I.1980. The organizational pattern of Baltic marine science. Ambio 9:187–193.Google Scholar
  6. Elmgren, R., 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapp. P.-v. Réun. Cons. int. Explor. Mer 183:149–166.Google Scholar
  7. Eppley, R. W. & B. J. Peterson, 1979. Particulate organic matter flux and planktonic new production in the deep ocean. — Nature 282:677–680.CrossRefGoogle Scholar
  8. Fonselius, S.H., 1969. Hydrography of the Baltic deep basins in. Fishery Bd. Sweden, Ser. Hydrogr. 23.Google Scholar
  9. Hillbricht-Ilkowska, A. 1977. Trophic relations and energy flow in pelagic plankton. Pol. ecol. Stud., 3:3–98.Google Scholar
  10. Howarth, R. W. & J. J. Cole, 1985. Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 229, 653–655.CrossRefGoogle Scholar
  11. Hägerhäll, B. 1980. International cooperation to protect the Baltic. Ambio 9:183–186.Google Scholar
  12. Imboden, D. M. 1985. Restoration of a Swiss lake by internal measures: can models explain reality. EWPCA: International Congress: Lakes Pollution and recovery. Proceedings-preprints, 29–40.Google Scholar
  13. Jansson, B.-O. 1972. Ecosystem approach to the Baltic problem. Bull. Ecol. Res. Comm/NFR 16:1-82.Google Scholar
  14. Jansson, B.-O. 1984. Baltic Sea ecosystem analysis: critical areas for future research. Iimnologica (Berlin) 15(2):237–252.Google Scholar
  15. Kautsky, N., 1981. On the trophic role of the blue mussel (Mytilus edulis L.) in a Baltic coastal ecosystem and the fate of the organic matter produced by the mussels. Kieler Meeresforsch., Sonderh. 5:454–461.Google Scholar
  16. Larsson, U., R. Elmgren and F. Wulff 1985. Eutrophication and the Baltic Sea: causes and consequences. Ambio, 14, 9–14.Google Scholar
  17. Legget, W.C., W.R. Boynton, V.F. Gallucci, L. Johnson, R. Margalef, J. McGlade, D. Mikelecky, R. Rosen, R.O. Ulloa & J. Watson, 1985. LHypothesis testing and sampling design in exploited ecosystems. In: Ulanowicz, R.E. & T. Platt (eds.) Ecosystem theory for biological oceanography. Can. Bull. Fish. Aquat Sci. 213:237–240.Google Scholar
  18. Lehman, J.T., 1986. The goal of understanding in limnology. Limnol. Oceanogr., 31(5),1160–1166.CrossRefGoogle Scholar
  19. Mann, K. H. 1982. Ecology of Coastal Waters. A systems approach. Studies in Ecology, Volume 8. Blackwell, 322 pp.Google Scholar
  20. Nehring, D., G. Aertebjerg, P. Alenius, V. Astok, S. Fonselius, M. Hannus, V. Tervo, A. Troszinska, P. Tulkki & A.K. Yurkovskis, 1987. Nutrients — In: Lassig, J. (ed). First periodic assessment of the state of the marine environment of the Baltic Sea area, 1980-1985; Background document. Baltic Sea Environm. Proc. 17B: 35–81.Google Scholar
  21. Nixon, S. W., C.A. Oviatt, J. Frithsen & B. Sullivan, 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems. J. limnol. Soc. sth. Afr. 12(l/2),43–71.Google Scholar
  22. Qdum, E. P. 1969. The strategy of ecosystem development Science 164:262–270.Google Scholar
  23. Odum, E.P. 1971a. Fundamentals of ecology. Saunders, 574 pp.Google Scholar
  24. Odum, H.T. 1971b. Environment, power and society. Wiley-Interscience, 331 pp.Google Scholar
  25. Pattern, B.C. and J.T. Finn 1979. Systems approach to continental shelf ecosystems. In: Theoretical systems ecology. (E. Halfon, ed.) pp. 183–212. Academic Press, New York and London.Google Scholar
  26. Pearson, T. H. and R. Rosenberg 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment Oceanogr. Mar. Biol. Ann. Rev. 16:229–311.Google Scholar
  27. Peters, R.H., 1986. The role of prediction in limnology. Limnol. Oceanogr., 31(5), 1143–1159.CrossRefGoogle Scholar
  28. Platt, T., K.H. Mann and R.E. Ulanowicz 1981. Mathematical models in biological oceanography. UNESCO Monographs in Océanographic Methodology, UNESCO Paris, 156 pp.Google Scholar
  29. Rahm, L. A. 1987. Oxygen consumption in the Baltic proper, limnol. Oceanogr., 32(4):973–978.Google Scholar
  30. Rumohr, J., E. Walger & B. Zeitzschel, 1987. Seawater-sediment interactions in coastal waters. An interdisciplinary approach. Lecture notes on Coastal and Estuarine Studies, 13. Springer Verlag, 338pp.Google Scholar
  31. Segerstråle, S.G., 1957. Baltic Sea. Mem. Geol. Soc. America 67:751–800.Google Scholar
  32. Shaffer, G. & U. Rönner 1984. Denitrification in the Baltic proper deep water. Deep-sea Res., 31,197–200.CrossRefGoogle Scholar
  33. Sjöberg, S., F. Wulff & P. Wåhlström 1972. Computer simulation of hydrochemical and biological processes in the Baltic. — Contrib. Askö Lab. Univ. Stockholm 20:1–99.Google Scholar
  34. Smith, S. V., 1984. Phosphorus versus nitrogen limitation in the marine environment. Limnol. Ocea-nogr. 19, 1149–1160.CrossRefGoogle Scholar
  35. Stigebrandt, A. 1983. A model for the exchange of water and salt between the Baltic and the Skager-rak. J. Phys. Oceanogr., 13, 411–427CrossRefGoogle Scholar
  36. Stigebrandt, A. 1985. A model for the seasonal pycnocline in rotating systems with application to the Baltic proper. J. Phys. Oceanogr., 15, 1392–1404.CrossRefGoogle Scholar
  37. Stigebrandt, A. 1987a. A model for the vertical circulation of the Baltic deep water. J. Phys. Oceanogr., in press.Google Scholar
  38. Stigebrandt, A. 1987b. Computations of the flow of dense water into the Baltic from hydrographical measurements in the Arkona basin. Tellus, 39A, 170–177.Google Scholar
  39. Stigebrandt, A. & F. Wulff 1987. A model for the dynamics of nutrients and oxygen in the Baltic proper. J. Mar. Res., 45, 729–759.CrossRefGoogle Scholar
  40. Ulanowicz, R. E. 1983. Identifying the structure of cycling in ecosystems. Mathematical Biosciences 65:219–237.CrossRefGoogle Scholar
  41. Ulanowicz, R. E. 1987. Ecosystem trophic foundations: Lindeman exonerata. In: Pattern, B.C. and S. Jorgensen (eds.) Progress in systems ecology. Elsevier, Amsterdam, in press.Google Scholar
  42. Ulanowicz, R. E. and T. Platt (ed.) 1985. Ecosystem theory for biological oceanography. Can. Bull. Fish Aquat. Sci. 213:260p.Google Scholar
  43. Vollenweider, R. A. 1969. Possibilities and limits of elementary models concerning the budget substances in lakes. Arch. Hydrobiol. 66(1): 1–36.Google Scholar
  44. Vollenwieder, R. A. (ed) 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris, France. 154 pp.Google Scholar
  45. Wassmann, P., 1986. Benthic nutrient regeneration as related to primary production in the west-Norwegian coastal zone. — Ophelia 26:443–456.Google Scholar
  46. Wulff, F. 1976. Ecological data and the model. Ambio Special Rep., 4:171–177.Google Scholar
  47. Wulff, F., G. Aertebjerg, G. Nicolaus, Å. Niemi, P. Oszevski, S. Schultz & W. Kaiser, 1986. The changing pelagic ecosystem of the Baltic Sea. Ophelia, Suppl. 4:299–319.Google Scholar
  48. Wulff, F. and R. E. Ulanowicz 1988. A comparative anatomy of the Baltic Sea and Chesapeake Bay ecosystems. In: Wulff, F., J.G. Field and K.H. Mann (eds.). Flow analysis of marine ecosystems. Theory and practice. Lecture Notes in Coastal and Estuarine Studies.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • F. Wulff
    • 1
  1. 1.The Askö Laboratory, Institute of Marine EcologyUniversity of StockholmStockholmSweden

Personalised recommendations